1. (Sketch.) Let $G$ be the group of symmetries in question. It is easy to check that the three reflections $a, b, c$ (as labelled in Amanda's beautiful picture) across the three edges of a "base" unit triangle satisfy the Coxeter relations of the Coxeter group $\widetilde{A}_{2}$ whose diagram is the unlabelled triangle. Also $a, b, c$ generate $G$, since the elements of $G$ are in bijection with the unit triangles of the grid, and the base triangle can be sent to every other triangle in the grid. This provides a labelling of the triangles of the grid with elements of $\widetilde{A}_{2}$.
To show that this labelling induces a bijection between the groups $G$ and $\widetilde{A}_{2}$ we count that they have the same number of elements of each length. As Mariana's beautiful picture clearly shows, there are $3 k$ elements of length $k$ in $G$. One then needs to prove that $\widetilde{A}_{2}$ also has exactly $3 k$ elements of length $k$, which can be checked in various ways - one way is deducing it from the Poincaré series, which we computed to be

$$
\widetilde{A}_{2}(q)=\frac{1+q+q^{2}}{(1-q)^{2}}
$$

