Problem 10. Let $S=\left\{s_{1} s_{n}, s_{2} s_{n}, \ldots, s_{n-1} s_{n}\right\}$. Let w be a word in the alternating group of W, then $w=s_{m_{1}} s_{m_{2}} s_{m_{3}} \ldots s_{m_{k}}$ with k even and we could group the expression in pairs as,

$$
w=\left(s_{m_{1}} s_{m_{2}}\right)\left(s_{m_{3}} s_{m_{4}}\right) \ldots\left(s_{m_{k-1}} s_{m_{k}}\right)
$$

Consider a pair $\left(s_{m_{2 i-1}} s_{m_{2 i}}\right)$. The case where $m_{2 i-1}=m_{2 i}$ is trivial, so suppose $m_{2 i-1} \neq m_{2 i}$. If $m_{2 i}=n$, then $\left(s_{m_{2 i-1}} s_{m_{2 i}}\right) \in S$. If $m_{2 i-1}=n$, then
$\left(s_{m_{2 i-1}} s_{m_{2 i}}\right)=\left(s_{m_{2 i}} s_{m_{2 i-1}}\right)^{-1}$ and $\left(s_{m_{2 i}} s_{m_{2 i-1}}\right) \in S$, so the pair is generated by S. Finally, suppose $m_{2 i-1}, m_{2 i} \neq n$, then we can write the pair as $\left(s_{m_{2 i-1}} s_{m_{2 i}}\right)=\left(s_{m_{2 i-1}} s_{n}\right)\left(s_{m_{2 i}} s_{n}\right)^{-1}$, so that pair is also generated by S. As the word w is finite, I could do that with every pair to conclude that w is generated by S. Now, it's clear that every word in W formed by the elements of S has an even number of words, so it's length is even too and it belongs to the alternating group.

