
4

x = e, lA(x) ! inv(x) for all x ∈ Sn such that inv(x) = 0 and that, for any
x "= e we could find a ∈ A such that inv(xa) = inv(x) − 1 (because otherwise
φ(x(v1)) would have to be less than φ(x(vi)) for all 1 < i, so it could only
be 1 and so on), we could apply induction on the inversion number of all the
permutations in Sn to get to lA(x) ! inv(x) for all x ∈ Sn. So lA(x) = inv(x)
and that’s the tool we will use to prove what we want to prove. Specifically,
we will prove the Exchange Property in the system (Sn, A) and use the equiv-
alence of that property with (Sn, A) being a Coxeter System. To start, we
define a1 = (v1, v2), a2 = (v2, v3), a3 = (v3, v4), ..., an−1 = (vn−1, vn) so that
A = {a1, a2, ..., an−1}. Let i, i1, ..., ip ∈ $n − 1% and define x = ai1ai2 ...aip .
Suppose

lA(xai) < lA(x)

Or equivalently,

inv(xai) < inv(x)

And that tells us (because of Eq. 2) b = φ(x(vi)) > φ(x(vi+1)) = a, so in
the complete representation of x, vb is to the left of va (multiplying ai to
the right just swaps those two positions), while in the complete representa-
tion of the identity vb is to the right of va because a < b, so there must ex-
ist a j ∈ $p% such that vb is to the right of va in ai1ai2 ...aij−1 but vb is to
the left of va in ai1ai2 ...aij−1aij (so vb and va must be in adjacent positions
in the complete representation of ai1ai2 ...aij−1 and the aij to the right just
swaps those positions). When completing the expression ai1ai2 ...aij−1aij to get
x = ai1ai2 ...aip , what we do is just swapping adjacent positions in the complete
representation of ai1ai2 ...aij−1aij until we are done, so equally, if we complete
the expression ai1ai2 ...aij−1 to get x but omitting the term aij , we should ob-
tain just the same representation as that of x but with vb and va swapped, so
now it should be clear that if we remove the term aij in ai1ai2 ...aip like this,
ai1ai2 ...aij−1aij+1 ...aip , we obtain the same complete repesentation of ai1ai2 ...aip

with the positions of vb and va swapped while everything else stays the same,
meaning that ai1ai2 ...aipai = ai1ai2 ...aij−1aij+1 ...aip , and we are done.
The extension to exercise 5 comes taking φ = idSn and the longest path in Ak

as 1− 2− 3− 4− ...− n.

Problem 10. Let S = {s1sn, s2sn, ..., sn−1sn}. Let w be a word in the al-
ternating group of W , then w = sm1sm2sm3 ...smk with k even and we could
group the expression in pairs as,

w = (sm1sm2)(sm3sm4)...(smk−1smk)

Consider a pair (sm2i−1sm2i). The case where m2i−1 = m2i is trivial, so sup-
pose m2i−1 "= m2i. If m2i = n, then (sm2i−1sm2i) ∈ S. If m2i−1 = n, then
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(sm2i−1sm2i) = (sm2ism2i−1)−1 and (sm2ism2i−1) ∈ S, so the pair is gener-
ated by S. Finally, suppose m2i−1, m2i "= n, then we can write the pair as
(sm2i−1sm2i) = (sm2i−1sn)(sm2isn)−1, so that pair is also generated by S. As
the word w is finite, I could do that with every pair to conclude that w is gen-
erated by S. Now, it’s clear that every word in W formed by the elements of
S has an even number of words, so it’s length is even too and it belongs to the
alternating group.


