1. Suppose the Coxeter diagram of ($W,\{a, b, c\}$) has an unlabelled edge between a and b, an edge labeled m between b and c, and no edge between a and c. If the relations bcbcacababcacbcabacbabacbc=e holds, determine m .
W is a group so associativity holds. And we are given the following additional relations
$e=(\mathrm{bc})^{m}=a^{2}=b^{2}=c^{2}=(a b)^{3}$
$a b a=b a b$
$a c=c a$
$\mathrm{e}=(\mathrm{bc}) \mathrm{b}(\mathrm{caca})(\mathrm{bab}) \mathrm{cacbcabac}(\mathrm{bab}) \mathrm{acbc}=(\mathrm{bc}) \mathrm{b}(\mathrm{c}(\mathrm{aa}) \mathrm{c})(\mathrm{aba})(\mathrm{cac}) \mathrm{bcabac}(\mathrm{aba}) \mathrm{acbc}$
$=(b c) b(c c)(a b a) a(c c) b c a b a c a b(a a) c b c=(b c) b a b(a a) b c a b a c a b c b c=(b c) b a(b b)(c a) b a(c a) b c b c$
$=(\mathrm{bc}) \mathrm{ba}(\mathrm{ac}) \mathrm{ba}(\mathrm{ac})(\mathrm{bc})(\mathrm{bc})=(\mathrm{bc}) \mathrm{b}(\mathrm{aa}) \mathrm{cb}(\mathrm{aa}) \mathrm{c}(\mathrm{bc})(\mathrm{bc})=(\mathrm{bc})(\mathrm{bc})(\mathrm{bc})(\mathrm{bc})(\mathrm{bc})=(\mathrm{bc})^{5}$
5 is minimal because nothing but 1 divides into it. However bc is not the identity so the order is not 1 .
This means $m=5$
