homework four

(due wednesday march 19 in sf, march 26 in bog.)

Instructions. Turn in your five best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You must write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

1. (Thanks to Richard Stanley.) Let S_{n} be the symmetric group and w_{0} its longest element.
(a) Prove that $s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{4} s_{3} s_{2} s_{1} \ldots s_{n-1} s_{n-2} \ldots s_{2} s_{1}$ is a reduced word for w_{0}.
(b) What is the smallest number of generators that one can remove from this reduced word to obtain a word for the identity?
2. Let $\left(S_{n}\right)^{J}$ be a parabolic quotient of S_{n} modulo a set of generators J with $|J|=n-2$. Prove that, if $x, y \in\left(S_{n}\right)^{J}$, then

$$
x \leq y \text { in the Bruhat order } \quad \Longleftrightarrow \quad x \leq_{L} y \text { in the left weak order. }
$$

3. Let W be a finite Coxeter group with long element w_{0} and let $w \in W$. Show that the set

$$
\left\{x \in W \mid x \wedge w=e \text { and } x \vee w=w_{0}\right\}
$$

is an interval in the weak order.
4. Prove that the weak order of the symmetric group S_{n}, when considered as a graph, is isomorphic to the graph formed by the vertices and the edges of the permutahedron Π_{n} :

$$
\Pi_{n}=\text { convex } \operatorname{hull}\left\{\left(\pi_{1}, \ldots, \pi_{n}\right) \mid \pi \in S_{n}\right\} .
$$

5. Give an example of an infinite Coxeter group whose weak order has no infinite antichains, and an example of an infinite Coxeter group whose weak order has an infinite antichain.
6. In Homework 2 you showed that the Coxeter group \widetilde{A}_{2} whose Coxeter diagram is an unlabelled triangle can be understood in terms of the infinite equilateral triangular grid. Explain the relationship between this realization and the geometric representation of \widetilde{A}_{2} in \mathbb{R}^{3}.
7. (Recommended.) Given a cube of sidelength $\frac{1}{\sqrt{2}}$, consider the 12 vectors that go from the center of the cube to the midpoints of its 12 edges. Prove that these 12 vectors form a root system for the symmetric group S_{4}. Draw a diagram of the cube, labeling the six positive roots with the six reflections in S_{4}. In a second cube draw the reflecting hyperplanes for s_{1}, s_{2} and s_{3}. Find $s_{1} s_{2} s_{3} s_{1} s_{2} s_{3}\left(\alpha_{1}\right)$, showing the successive images of α_{1} after each reflection.
8. Prove the following statement for the dihedral groups $I_{2}(2 m)$ and $I_{2}(\infty)$:

For $w \in W$ and $s_{i} \in S, \ell\left(w s_{i}\right)>\ell(w)$ implies $w \alpha_{i}>0$, and $\ell\left(w s_{i}\right)<\ell(w)$ implies $w \alpha_{i}<0$.
9. (Recommended.) Given a reduced expression $w=s_{1} \ldots s_{r}$ in a Coxeter system (W, S), let α_{i} be the simple root corresponding to s_{i}. Prove that the positive roots that w sends to negative roots are precisely the r roots of the form $\beta_{i}=s_{r} s_{r-1} \ldots s_{i+1}\left(\alpha_{i}\right)$.
10. Suppose an element w of W acts by a geometric reflection in the geometric representation of $G L(V)$, in the sense that there exists a unit vector $\alpha \in V$ such that $w v=v-2\langle v, \alpha\rangle \alpha$ for all $v \in V$. Prove that α is a root and w is a reflection (i.e. a conjugate of a generator) in W.

