federico ardila

homework three

due Wednesday, Mar. 5

(On paper at 10am, or as a single .pdf file by midnight, SF time.)

Instructions. Turn in your **five** best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You *must* write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

- 1. If w_0 is an element of a Coxeter group such that $sw_0 < w_0$ for every simple reflection $s \in S$, prove that $w \leq w_0$ for all $w \in W$.
- 2. Consider the Coxeter system $(S_n, \{s_1, \ldots, s_{n-1}\})$. Let $J = \{s_1, \ldots, \hat{s_k}, \ldots, s_{n-1}\}$. Describe combinatorially the elements of the parabolic quotient S_n^J , and the projection map $w \mapsto w^J$.
- 3. Prove that the parabolic subgroups of the Coxeter system $(S_n, \{s_1, \ldots, s_{n-1}\})$ are Young subgroups of the symmetric group S_n . Conversely, prove that every Young subgroup of S_n is a parabolic subgroup for some choice of generators.

(Note. Given a partition A of [n] as a disjoint union of sets A_1, \ldots, A_k , the Young subgroup $S_A = S_{A_1} \times \cdots \times S_{A_k}$ of S_n consists of the permutations of [n] which map elements of A_i to elements of A_i for each i.)

4. Consider the Coxeter system (S₄, {s₁, s₂, s₃}); let J = {s₁, s₃}. Draw the Bruhat order of S₄ and the product poset (S₄)^J × (S₄)_J inside it.
(Note. The product P × Q of two posets P and Q consists of the elements (p,q) with

 $p \in P, q \in Q$, ordered by declaring that $(p,q) \leq (p',q')$ if $p \leq p'$ and $q \leq q'$.)

- 5. Give a combinatorial proof of the following fact: in any interval [u, v] in the Bruhat order of a Coxeter group, the number of elements of even rank equals the number of elements of odd rank.
- 6. Given a Coxeter system (W, S) and $I, J \subseteq S$, prove that
 - (a) $W_I \cap W_J = W_{I \cap J}$
 - (b) $\langle W_I \cup W_J \rangle = W_{I \cup J}$
 - (c) $W_I = W_J$ if and only if I = J.
- 7. Let (W, S) be a finite irreducible Coxeter system and $J \subset S$. Show that if W^J is a lattice, then it is a distributive lattice and |J| = |S| 1.

(Note. A Coxeter system is finite if its Coxeter diagram is connected. A lattice L is distributive if $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for all $x, y, z \in L$.)

- 8. Show that if one is given the Bruhat order of a Coxeter system (W, S), one can determine its Bruhat graph.
- 9. Let (W, S) be a Coxeter system with S finite. Show that every antichain in the Bruhat order of W is finite.

(Note. An *antichain* of a poset is a subset of pairwise incomparable elements.)

10. Suppose W is infinite but every parabolic subgroup of W is finite. Let $W(q) = \sum_{w \in W} q^{\ell(w)}$. Prove that $W(1/q) = \pm W(q)$ as rational functions.