federico ardila

homework two

due Wednesday, Feb. 20

(On paper at 10am, or as a single .pdf file by midnight, SF time.)

Instructions. Turn in your **five** best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You *must* write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

- 1. Prove that the group of symmetries of an infinite equilateral triangular grid equals the Coxeter group whose Coxeter diagram is a triangle with no labels on the edges.
- 2. Prove that the length function $\ell: W \to \mathbb{N}$ of a Coxeter system (W, S) satisfies the following properties:
 - (a) $\ell(uv)$ and $\ell(u) + \ell(v)$ have the same parity for $u, v \in W$.
 - (b) $\ell(w^{-1}) = \ell(w)$ for $w \in W$.
 - (c) $\ell(sw) = \ell(w) \pm 1$ for $w \in W$ and $s \in S$.
 - (d) The distance function $d(u, v) = \ell(uv^{-1})$ is a metric on W.
- 3. Prove that $\ell(uv) = \ell(u) + \ell(v)$ if and only if there does not exist a reflection $t \in T$ such that $\ell(ut) < \ell(u)$ and $\ell(tv) < \ell(v)$.
- 4. Prove that any two reduced words for $w \in W$ can be obtained from each other by successively replacing $ss'ss' \cdots$ by $s'ss's \cdots$ (both of length m(s,s')) for $s, s' \in S$.
- 5. Prove that if $s_1, \ldots, s_k \in S$ are such that $s_1 \cdots s_k = e$, then one can obtain the empty word from $s_1 \cdots s_k$ by successively replacing $ss'ss' \cdots$ by $s'ss's \cdots$ (both of length m(s, s')) for $s, s' \in S$, and removing ss for $s \in S$. Use this to describe an algorithm for the *word problem* for Coxeter groups: determining whether a word in the generators equals the identity.
- 6. Are 283457619 and 298563471 comparable in the Bruhat order of S_9 ?
- 7. Let E_{\bullet} and F_{\bullet} be two complete flags in \mathbb{R}^n . Prove that the table $\{\dim(E_i \cap F_j)\}_{1 \leq i,j \leq n}$ is the rank table of a permutation in S_n .
- 8. Prove that the set of permutaitons $\{x \in S_{2n} : |x(i) i| \le n \text{ for } 1 \le i \le 2n\}$ forms an interval in the Bruhat order of S_{2n} . How many atoms and coatoms does this interval have?
- 9. An $n \times n$ matrix is totally non-negative if all of its minors are non-negative. Let u and v be permutations in S_n . Prove that $u \leq v$ in the Bruhat order if and only if

$$a_{1,u(1)}a_{2,u(2)}\cdots a_{n,u(n)} \ge a_{1,v(1)}a_{2,v(2)}\cdots a_{n,v(n)}$$

for any totally non-negative matrix $(a_{ij})_{1 \le i,j \le n}$.

10. A permutation $w \in S_n$ is said to be 321-avoiding if there are no $1 \le a < b < c \le n$ with w(a) > w(b) > w(c). Prove that a permutation is 321-avoiding if and only if no reduced decomposition of w contains a subsequence of the form $s_i s_{i+1} s_i$ or $s_{i+1} s_i s_{i+1}$.