homework two

due Wednesday, Feb. 20
(On paper at 10 am , or as a single .pdf file by midnight, SF time.)

Instructions. Turn in your five best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You must write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

1. Prove that the group of symmetries of an infinite equilateral triangular grid equals the Coxeter group whose Coxeter diagram is a triangle with no labels on the edges.
2. Prove that the length function $\ell: W \rightarrow \mathbb{N}$ of a Coxeter system (W, S) satisfies the following properties:
(a) $\ell(u v)$ and $\ell(u)+\ell(v)$ have the same parity for $u, v \in W$.
(b) $\ell\left(w^{-1}\right)=\ell(w)$ for $w \in W$.
(c) $\ell(s w)=\ell(w) \pm 1$ for $w \in W$ and $s \in S$.
(d) The distance function $d(u, v)=\ell\left(u v^{-1}\right)$ is a metric on W.
3. Prove that $\ell(u v)=\ell(u)+\ell(v)$ if and only if there does not exist a reflection $t \in T$ such that $\ell(u t)<\ell(u)$ and $\ell(t v)<\ell(v)$.
4. Prove that any two reduced words for $w \in W$ can be obtained from each other by successively replacing $s s^{\prime} s s^{\prime} \cdots$ by $s^{\prime} s s^{\prime} s \cdots$ (both of length $m\left(s, s^{\prime}\right)$) for $s, s^{\prime} \in S$.
5. Prove that if $s_{1}, \ldots, s_{k} \in S$ are such that $s_{1} \cdots s_{k}=e$, then one can obtain the empty word from $s_{1} \cdots s_{k}$ by successively replacing $s s^{\prime} s s^{\prime} \cdots$ by $s^{\prime} s s^{\prime} s \cdots$ (both of length $m\left(s, s^{\prime}\right)$) for $s, s^{\prime} \in S$, and removing $s s$ for $s \in S$. Use this to describe an algorithm for the word problem for Coxeter groups: determining whether a word in the generators equals the identity.
6. Are 283457619 and 298563471 comparable in the Bruhat order of S_{9} ?
7. Let E_{\bullet} and F_{\bullet} be two complete flags in \mathbb{R}^{n}. Prove that the table $\left\{\operatorname{dim}\left(E_{i} \cap F_{j}\right)\right\}_{1 \leq i, j \leq n}$ is the rank table of a permutation in S_{n}.
8. Prove that the set of permutaitons $\left\{x \in S_{2 n}:|x(i)-i| \leq n\right.$ for $\left.1 \leq i \leq 2 n\right\}$ forms an interval in the Bruhat order of $S_{2 n}$. How many atoms and coatoms does this interval have?
9. An $n \times n$ matrix is totally non-negative if all of its minors are non-negative. Let u and v be permutations in S_{n}. Prove that $u \leq v$ in the Bruhat order if and only if

$$
a_{1, u(1)} a_{2, u(2)} \cdots a_{n, u(n)} \geq a_{1, v(1)} a_{2, v(2)} \cdots a_{n, v(n)}
$$

for any totally non-negative matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$.
10. A permutation $w \in S_{n}$ is said to be 321-avoiding if there are no $1 \leq a<b<c \leq n$ with $w(a)>w(b)>w(c)$. Prove that a permutation is 321-avoiding if and only if no reduced decomposition of w contains a subsequence of the form $s_{i} s_{i+1} s_{i}$ or $s_{i+1} s_{i} s_{i+1}$.

