homework one

due Wednesday, Feb. 6
(On paper at 10 am , or as a single .pdf file by midnight, SF time.)

Instructions. Turn in your five best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You must write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

1. Suppose that the Coxeter diagram of $(W,\{a, b, c\})$ has an unlabelled edge between a and b, an edge labelled m between b and c, and no edge between a and c. If the relation $b c b c a c a b a b c a c b c a b a c b a b a c b c=1$ holds, determine the value of m.
2. Show that there exist Coxeter systems (W, S) and $\left(W^{\prime}, S^{\prime}\right)$ with $|S| \neq\left|S^{\prime}\right|$ such that $W \cong W^{\prime}$. (Hint. There is an example with $W \cong W^{\prime} \cong D_{6}$.)
3. (Recommended.) Let $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ be a Coxeter matrix. The Coxeter group associated to m is $W \cong F / N$, where F is the free group generated by N and N is the normal subgroup generated by $\left\{\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}: s, s^{\prime} \in S\right\}$.
(a) Let S^{*} be the set of finite words in the alphabet S, and define the product of two words to be their concatenation. Consider the equivalence the relation $u v \sim u\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v$ for all $u, v \in S^{*}, s, s^{\prime} \in S$. Prove that the product on S^{*} extends to a product on S^{*} / \sim, and that this product makes S^{*} / \sim into a group isomorphic to W.
(b) Prove that W is the "universal group" satisfying the Coxeter relations: If G is a group and $\{f(s)\}_{s \in S}$ are elements of G such that $\left(f(s) f\left(s^{\prime}\right)\right)^{m\left(s, s^{\prime}\right)}=1$ for all $s, s^{\prime} \in S$, then f extends uniquely to a group homomorphism $f: W \rightarrow G$.
4. Prove that every dihedral group is a Coxeter group.
5. (Recommended.) For $1 \leq i \leq n-1$ let $s_{i}=(i, i+1)$ be the i th simple transposition in the symmetric group S_{n}. Prove that $\left(S_{n},\left\{s_{1}, \ldots, s_{n-1}\right\}\right)$ is a Coxeter system.
6. Prove that the hyperoctahedral group is a Coxeter group.
7. Identify the set T of transpositions $\{(i j): 1 \leq i<j \leq n\}$ in the symmetric group S_{n} with the edges of the complete graph K_{n}.
(a) Prove that $A \subseteq T$ generates S_{n} if and only if A connects all vertices of K_{n}.
(b) Prove that $A \subseteq T$ is a system of Coxeter generators for S_{n} if and only if A is a path connecting all vertices of K_{n}.
8. If a Coxeter diagram G decomposes into connected components G_{1}, \ldots, G_{k}, prove that the Coxeter group W of G is isomorphic to the direct product of the Coxeter groups W_{1}, \ldots, W_{k} corresponding to G_{1}, \ldots, G_{k}.
9. Prove that any reflection in a Coxeter group has a palyndromic reduced expression.
10. Let $\left(W,\left\{s_{1}, \ldots, s_{n}\right\}\right)$ be a Coxeter group. Prove that the alternating group of W is generated by $s_{1} s_{n}, s_{2} s_{n}, \ldots, s_{n-1} s_{n}$.
