federico ardila

homework one

due Wednesday, Feb. 6

(On paper at 10am, or as a single .pdf file by midnight, SF time.)

Instructions. Turn in your **five** best problems out of the following list. You are encouraged to work together on the homework, but you must state who you worked with on each problem. You *must* write your solutions independently and in your own words. I encourage you to type your solutions using LaTeX; that will be good practice for the final project, where LaTeX is mandatory.

- 1. Suppose that the Coxeter diagram of $(W, \{a, b, c\})$ has an unlabelled edge between a and b, an edge labelled m between b and c, and no edge between a and c. If the relation bcbcacababcacbcabacbabacbc = 1 holds, determine the value of m.
- 2. Show that there exist Coxeter systems (W, S) and (W', S') with $|S| \neq |S'|$ such that $W \cong W'$. (Hint. There is an example with $W \cong W' \cong D_6$.)
- 3. (Recommended.) Let $m: S \times S \to \{1, 2, ..., \infty\}$ be a Coxeter matrix. The Coxeter group associated to m is $W \cong F/N$, where F is the free group generated by N and N is the normal subgroup generated by $\{(ss')^{m(s,s')}: s, s' \in S\}$.
 - (a) Let S^* be the set of finite words in the alphabet S, and define the product of two words to be their concatenation. Consider the equivalence the relation $uv \sim u(ss')^{m(s,s')}v$ for all $u, v \in S^*, s, s' \in S$. Prove that the product on S^* extends to a product on S^*/\sim , and that this product makes S^*/\sim into a group isomorphic to W.
 - (b) Prove that W is the "universal group" satisfying the Coxeter relations: If G is a group and $\{f(s)\}_{s\in S}$ are elements of G such that $(f(s)f(s'))^{m(s,s')} = 1$ for all $s, s' \in S$, then f extends uniquely to a group homomorphism $f: W \to G$.
- 4. Prove that every dihedral group is a Coxeter group.
- 5. (Recommended.) For $1 \le i \le n-1$ let $s_i = (i, i+1)$ be the *i*th simple transposition in the symmetric group S_n . Prove that $(S_n, \{s_1, \ldots, s_{n-1}\})$ is a Coxeter system.
- 6. Prove that the hyperoctahedral group is a Coxeter group.
- 7. Identify the set T of transpositions $\{(ij) : 1 \le i < j \le n\}$ in the symmetric group S_n with the edges of the complete graph K_n .
 - (a) Prove that $A \subseteq T$ generates S_n if and only if A connects all vertices of K_n .
 - (b) Prove that $A \subseteq T$ is a system of Coxeter generators for S_n if and only if A is a path connecting all vertices of K_n .
- 8. If a Coxeter diagram G decomposes into connected components G_1, \ldots, G_k , prove that the Coxeter group W of G is isomorphic to the direct product of the Coxeter groups W_1, \ldots, W_k corresponding to G_1, \ldots, G_k .
- 9. Prove that any reflection in a Coxeter group has a palyndromic reduced expression.
- 10. Let $(W, \{s_1, \ldots, s_n\})$ be a Coxeter group. Prove that the alternating group of W is generated by $s_1s_n, s_2s_n, \ldots, s_{n-1}s_n$.