Short Homework 2

Let $I=\left\langle x^{5}, y^{5}, z^{5}, x^{2} y z, x y^{2} z, x^{3} z^{2}, y^{3} z^{2}, x^{4} y^{3}, x^{3} y^{4}\right\rangle \subseteq \mathbb{F}[x, y, z]$.
(a) Draw the staircase surface for I.

(b) In a separate picture, draw the Buchberger graph of I. Show that the complete graph K_{5} can be obtained from G by repeatedly contracting some edges. Since K_{5} cannot be drawn in the plane, neither can G.

(c) Draw the staircase surface of a generic deformation J of I. (Move some of the 9 inner corners by tiny amounts to make I generic.)

(d) Use the resolution by picture of J to compute the coarse Hilbert series of I.

The Buchberger graph for J is the following:

Using this graph and forgetting about the ϵ we get the following Hilbert series (vertices-edges+faces/variables):

$$
\begin{aligned}
H(I ; x, y, z)= & {\left[\left(x^{5}+y^{5}+z^{5}+x^{2} y z+x y^{2} z+x^{3} z^{2}+y^{3} z^{2}+x^{4} y^{3}+x^{3} y^{4}\right)\right.} \\
& -\left(x^{5} y^{3}+x^{4} y^{4}+x^{3} y^{5}+x^{5} z^{2}+x^{5} y z+x^{4} y^{3} z+x^{3} y^{4} z+x y^{5} z+x^{2} y^{5} z+\right. \\
& \left.y^{5} z^{2}+x^{3} y z^{2}+x^{2} y^{2} z+x y^{3} z^{2}+x^{3} z^{5}+x^{2} y z^{5}+x y^{2} z^{5}+y^{3} z^{5}\right) \\
& \left.+\left(x^{5} y z^{2}+x^{5} y^{3} z+x^{4} y^{4} z+x^{3} y^{5} z+x^{2} y^{5} z+x y^{5} z^{2}+x^{3} y z^{5}+x^{2} y^{2} z^{5}+x y^{3} z^{5}\right)\right] \\
& /(1-x)(1-y)(1-z) .
\end{aligned}
$$

The coarse Hilbert series for I is obtained by substituting x into y and z and thus we obtain:

$$
\begin{aligned}
H(I ; x) & =\left[\left(2 x^{7}+5 x^{5}+2 x^{4}\right)-\left(10 x^{8}+4 x^{7}+2 x^{6}+x^{5}\right)+\left(6 x^{9}+3 x^{8}\right)\right] /(1-x)^{3} \\
& =\left[\left(6 x^{9}-7 x^{8}-2 x^{7}-2 x^{6}+4 x^{5}+2 x^{4}\right)\right] /(1-x)^{3} .
\end{aligned}
$$

