The fundamental relationship we know between the h- and f-polynomials is

1

$$h(t) = (1-t)^d f\left(\frac{t}{1-t}\right).$$

Skandera's trick is essentially a direct restatement of this, in view of the fact that for a polynomial g of degree d, reversing the list of coefficients of g(t) yields $t^d g(t^{-1})$. So the steps of the trick successively yield $t^d f(t^{-1})$, then $(t-1)^d f((t-1)^{-1})$, then $t^d(t^{-1}-1)^d f((t^{-1}-1)^{-1})$, which in view of $t^{-1}-1 = (1-t)/t$ simplifies to $(1-t)^d f(t/(1-t)) = h(t)$.

Having this, we need only show that Stanley's trick carries the polynomial g(t) on the falling diagonal to the polynomial g(t-1) read left-to-right across the bottom. We show this inductively on the degree d of g. Let g_d, \ldots, g_0 be the coefficients of g(t), and g'_d, \ldots, g'_0 those of g(t-1). If d = 0, then $g_0 = g'_0$ and the array is simply

 g_0

g_0

 $k'_{d-1} \qquad \cdots$

Otherwise let k(t) = (g(t) - g(0))/t be the polynomial obtained by truncating the last coefficient of g, and define the coefficients k_i and k'_i in the obvious fashion. By induction we have an array of form

 k_{d-1}

 k_0

 k'_0

Now suppose we add the coefficient g_0 to the space in the lower-right corner, and compute another row of differences along the bottom. In the *i*th position we get $k'_i - k'_{i+1}$, with the convention $k'_d = 0$ and $k'_{-1} = g_0$. and we want to prove this equal to h'_{i+1} for the induction to go through. By expanding and using the fact that the k' are the coefficients of k(t-1), we can check that these differences are the coefficients of $(t-1)k(t-1) + g_0$, which by the construction of k is g(t-1). This completes the induction.