The fundamental relationship we know between the h - and f-polynomials is

$$
h(t)=(1-t)^{d} f\left(\frac{t}{1-t}\right) .
$$

Skandera's trick is essentially a direct restatement of this, in view of the fact that for a polynomial g of degree d, reversing the list of coefficients of $g(t)$ yields $t^{d} g\left(t^{-1}\right)$. So the steps of the trick successively yield $t^{d} f\left(t^{-1}\right)$, then $(t-1)^{d} f((t-$ $\left.1)^{-1}\right)$, then $t^{d}\left(t^{-1}-1\right)^{d} f\left(\left(t^{-1}-1\right)^{-1}\right)$, which in view of $t^{-1}-1=(1-t) / t$ simplifies to $(1-t)^{d} f(t /(1-t))=h(t)$.

Having this, we need only show that Stanley's trick carries the polynomial $g(t)$ on the falling diagonal to the polynomial $g(t-1)$ read left-to-right across the bottom. We show this inductively on the degree d of g. Let g_{d}, \ldots, g_{0} be the coefficients of $g(t)$, and $g_{d}^{\prime}, \ldots, g_{0}^{\prime}$ those of $g(t-1)$. If $d=0$, then $g_{0}=g_{0}^{\prime}$ and the array is simply

$$
g_{0}
$$

g_{0}

Otherwise let $k(t)=(g(t)-g(0)) / t$ be the polynomial obtained by truncating the last coefficient of g, and define the coefficients k_{i} and k_{i}^{\prime} in the obvious fashion. By induction we have an array of form

Now suppose we add the coefficient g_{0} to the space in the lower-right corner, and compute another row of differences along the bottom. In the i th position we get $k_{i}^{\prime}-k_{i+1}^{\prime}$, with the convention $k_{d}^{\prime}=0$ and $k_{-1}^{\prime}=g_{0}$. and we want to prove this equal to h_{i+1}^{\prime} for the induction to go through. By expanding and using the fact that the k^{\prime} are the coefficients of $k(t-1)$, we can check that these differences are the coefficients of $(t-1) k(t-1)+g_{0}$, which by the construction of k is $g(t-1)$. This completes the induction.

