One free resolution of $R /\left(x^{m}\right)$ is given as

$$
\cdots \xrightarrow{x^{m}} R \xrightarrow{x^{n-m}} R \xrightarrow{x^{m}} R \xrightarrow{x^{n-m}} R \rightarrow R /\left(x^{m}\right) \rightarrow 0
$$

where all the labelled arrows are multiplication. Exactness follows from that the image of multiplication by x^{k} in R is $\left(x^{k}\right)$ and its kernel is $\left(x^{n-k}\right)$, and that $R /\left(x^{m}\right)$ is isomorphic to $\left(x^{n-m}\right)$ as an R-module. (This is routinely computed; each kernel one encounters in the computation has form $\left(x^{k}\right)$, which has a single generator.)

We'll show that every injection of free R-modules has free cokernel. Then given an R-module M with finite free resolution

$$
0 \rightarrow F^{n} \rightarrow F^{n-1} \rightarrow \cdots \rightarrow F^{1} \rightarrow F^{0} \rightarrow M \rightarrow 0
$$

as long as $n>0$ the left-hand end $0 \rightarrow F^{n} \xrightarrow{\phi} F^{n-1} \rightarrow \cdots$ of this sequence may be replaced with $0 \rightarrow(\operatorname{coker} \phi) \rightarrow \cdots$ while keeping the sequence a free resolution, and performing enough such replacements we find that M is isomorphic to a free R-module.

So let $\phi: G \hookrightarrow F$ be an injection of free R-modules. Now, ϕ restricts to an injection $x^{n-1} G \hookrightarrow x^{n-1} F$ of k-vector spaces, whose cokernel is a k-vector space as well. Let $\left\{x^{n-1} h_{i}: i \in N\right\}$ be representatives in $x^{n-1} G$ of a basis for this cokernel.

We then claim that $G / \phi(F)$ is freely generated as an R-module by the classes $\overline{h_{i}}$. By induction on n we may assume that the classes $\overline{h_{i}}$ freely generate $G /\left(x^{n-1} G+\phi(F)\right)$.

Given any $g \in G$, there's some $R /\left(x^{n-1}\right)$-linear combination of the h_{i} in $G / x^{n-1} G$, call it \tilde{g}^{\prime}, such that $\overline{\tilde{g}^{\prime}}=\bar{g}$ in $G /\left(x^{n-1} G+\phi(F)\right)$. We lift \tilde{g}^{\prime} to $g^{\prime} \in G$ by replacing the $R /\left(x^{n-1}\right)$ coefficients with arbitrary lifts to $R /\left(x^{n}\right)$. Then $\overline{g^{\prime}-g}$ in $G / \phi(F)$ is a multiple of x^{n-1}. So by choice of the h_{i} we have a $x^{n-1} R$-linear combination $g^{\prime \prime}$ of the h_{i} with $\overline{g^{\prime \prime}}=\overline{g^{\prime}-g}$ in $G / \phi(F)$, and then $\bar{g}=\overline{g^{\prime}-g^{\prime \prime}}$, showing that the h_{i} generate $G / \phi(F)$.

For freeness we do similarly. If we had $\sum_{i} a_{i} h_{i} \in \phi(F)$ for some $a_{i} \in R$, then inductively $a_{i} \cong 0 \bmod x^{n-1}$ for each i. But then $\sum_{i} a_{i} h_{i}$ is a k-linear combination of the $x^{n-1} h_{i}$, and so by choice of the h_{i} we must have that $a_{i}=0$ for each i.

