2. Fix an ideal *I* of $\mathbb{F}[x_1, \ldots, x_n]$ and a monomial order.

Lemma 1: Let I' be an ideal generated by monomials m_1, \ldots, m_k . Then $f \in \mathbb{F}[x_1, \ldots, x_n]$ is in I' if and only if every monomial term f_i of f is a multiple of one of the m_j .

 \Rightarrow If $f \in I'$, $f = a_1m_1 + \cdots + a_km_k$ for $a_i \in \mathbb{F}[x_1, \ldots, x_n]$. Each a_i is the sum of monomial terms, so for each $1 \leq i \leq k$, if we distribute m_i over the monomial terms of a_i , f is a sum of monomial terms, each of which has a factor of at least one of the m_i . \Leftarrow If every monomial term of f is a multiple of one of the m_i , for each $1 \leq i \leq k$, we can "collect" all the monomials that are multiples of that m_i and factor m_i out, thereby expressing f in the form $f = b_1m_1 + \cdots + b_km_k$ for $b_i \in \mathbb{F}[x_1, \ldots, x_n]$. which implies that $f \in I'$.

Lemma 2: Let $\{m_1, \ldots, m_n\}$ be a minimal set of monomials that generate monomial ideal I' in $\mathbb{F}[x_1, \ldots, x_n]$. Then each m_i is unique, $1 \le i \le k$.

Let $f \in I'$. From Lemma 1, every monomial term of f is a multiple of one of the m_i . Suppose the m_i are not unique, is suppose that $m_j = m_k$ for some $j \neq k$. Then we can rewrite each monomial term of f, replacing each occurrence of m_k with m_j , so that each monomial term of f is not a multiple m_k . (Note that we replace any m_k that appear as monomial coefficients from $\mathbb{F}[x_1, \ldots, x_n]$ as well). Then as above, we "collect like terms", factor out the m_i , and express f in the form $f = b_1m_1 + \cdots + b_nm_n$ for $b_i \in \mathbb{F}[x_1, \ldots, x_n]$, but f will have no term that is a multiple of m_k , which contradicts that m_1, \ldots, m_n is minimal. Therefore each m_i is unique.

(a) Prove that $\{g_1, \ldots, g_m\} \subset I$ is a minimal Gröbner basis for I if and only if the multiset $\{in(g_1), \ldots, in(g_m)\}$ is a minimal generating set for in(I).

Let $\{g_1, \ldots, g_m\}$ be a minimal Gröbner basis for I. Then by the definition of Gröbner basis, $in(I) = \langle in(g_1), \ldots, in(g_m) \rangle$. Suppose $\{in(g_1), \ldots, in(g_m)\}$ is not a minimal generating set for in(I). Then $\{in(g_1), \ldots, in(g_m)\} \setminus in(g_i)$ generates in(I) for some $in(g_i) \in \{in(g_1), \ldots, in(g_m)\}$. Then since $g_i \in I$, $in(g_i) \in in(I)$ and in particular, note that $in(g_i)$ is a monomial. Then from Lemma 1 above, $in(g_i)$ is a multiple of some $in(g_j)$, $i \neq j$ from the generating set of in(I). But this contradicts the definition of a minimal Gröbner basis. Therefore $\{in(g_1), \ldots, in(g_m)\}$ must be a minimal generating set.

Now let $\{in(g_1), \ldots, in(g_m)\}$ be a minimal generating set for in(I) and suppose that $\{g_1, \ldots, g_m\}$ is not a minimal Gröbner basis for I. Then there is some $in(g_j)$ that is a multiple of some $in(g_k)$, $j \neq k$. But this implies that $\{in(g_1), \ldots, in(g_m)\}$ is not minimal, which is a contradiction. Therefore $\{g_1, \ldots, g_m\}$ is a minimal Gröbner basis for I.

(b) Prove that any two minimal Gröbner bases for I have the same size and the same set of leading terms

Let $\{g_1, \ldots, g_m\}$ and $\{h_1, \ldots, h_n\}$ be two minimal Gröbner bases for I. Then from part a, $\{in(g_1), \ldots, in(g_m)\}$ and $\{in(h_1), \ldots, in(h_n)\}$ are minimal monomial generating sets for in(I). Then by lemma 1, $in(g_i) = m_1 in(h_j)$ and $in(h_j) = m_2 in(g_k)$ for some monic monomials $m_1, m_2 \in \mathbb{F}[x_1, \ldots, x_n]$, $1 \leq i, k \leq m$, and $1 \leq j \leq n$. This implies $in(g_i) = m_1 m_2 in(g_k)$. From the definition of minimal Gröbner basis, we know that $in(g_i)$ is not a multiple of $in(g_k), i \neq k$. This implies that $m_1 m_2 = 1$ and i = k. And since m_1 and m_2 are monic monomials, this implies that $m_1 = m_2 = 1$. Thus we know that $in(g_i) = in(h_j)$. From lemma 2, we know that the $in(g_i)$, $1 \leq i \leq m$, and $in(h_j), 1 \leq j \leq n$ are unique. Therefore there is a bijection between $\{in(g_1), \ldots, in(g_m)\}$ and $\{in(h_1), \ldots, in(h_n)\}$. This implies that m = n, and so any two minimal Gröbner bases for I have the same size and the same set of leading terms.