
2. Fix an ideal I of F[x1, . . . , xn] and a monomial order.

Lemma 1: Let I ′ be an ideal generated by monomials m1, . . . ,mk. Then f ∈ F[x1, . . . , xn] is in I ′

if and only if every monomial term fi of f is a multiple of one of the mj .

⇒ If f ∈ I ′, f = a1m1 + · · · akmk for ai ∈ F[x1, . . . , xn]. Each ai is the sum of monomial terms, so
for each 1 ≤ i ≤ k, if we distribute mi over the monomial terms of ai, f is a sum of monomial
terms, each of which has a factor of at least one of the mi. ⇐ If every monomial term of f is a
multiple of one of the mi, for each 1 ≤ i ≤ k, we can “collect” all the monomials that are
multiples of that mi and factor mi out, thereby expressing f in the form f = b1m1 + · · · bkmk for
bi ∈ F[x1, . . . , xn]. which implies that f ∈ I ′.

Lemma 2: Let {m1, . . . ,mn} be a minimal set of monomials that generate monomial ideal I ′ in
F[x1, . . . , xn]. Then each mi is unique, 1 ≤ i ≤ k.

Let f ∈ I ′. From Lemma 1, every monomial term of f is a multiple of one of the mi. Suppose the
mi are not unique, ie suppose that mj = mk for some j %= k. Then we can rewrite each monomial
term of f , replacing each occurence of mk with mj , so that each monomial term of f is not a
multiple mk. (Note that we replace any mk that appear as monomial coefficients from
F[x1, . . . , xn] as well). Then as above, we “collect like terms”, factor out the mi, and express f in
the form f = b1m1 + · · · bnmn for bi ∈ F[x1, . . . , xn], but f will have no term that is a multiple of
mk, which contradicts that m1, . . . ,mn is minimal. Therefore each mi is unique.

(a) Prove that {g1, . . . , gm} ⊂ I is a minimal Gröbner basis for I if and only if the
multiset {in(g1), . . . , in(gm)} is a minimal generating set for in(I).

Let {g1, . . . , gm} be a minimal Gröbner basis for I. Then by the definition of Gröbner basis,
in(I) = 〈in(g1), . . . , in(gm)〉. Suppose {in(g1), . . . , in(gm)} is not a minimal generating set for
in(I). Then {in(g1), . . . , in(gm)} \ in(gi) generates in(I) for some in(gi) ∈ {in(g1), . . . , in(gm)}.
Then since gi ∈ I, in(gi) ∈ in(I) and in particular, note that in(gi) is a monomial. Then from
Lemma 1 above, in(gi) is a multiple of some in(gj), i %= j from the generating set of in(I). But
this contradicts the definition of a minimal Gröbner basis. Therefore {in(g1), . . . , in(gm)} must be
a minimal generating set.

Now let {in(g1), . . . , in(gm)} be a minimal generating set for in(I) and suppose that {g1, . . . , gm}
is not a minimal Gröbner basis for I. Then there is some in(gj) that is a multiple of some in(gk),
j %= k. But this implies that {in(g1), . . . , in(gm)} is not minimal, which is a contradiction.
Therefore {g1, . . . , gm} is a minimal Gröbner basis for I.

(b) Prove that any two minimal Gröbner bases for I have the same size and the
same set of leading terms

Let {g1, . . . , gm} and {h1, . . . , hn} be two minimal Gröbner bases for I. Then from part a,
{in(g1), . . . , in(gm)} and {in(h1), . . . , in(hn)} are minimal monomial generating sets for in(I).
Then by lemma 1, in(gi) = m1in(hj) and in(hj) = m2in(gk) for some monic monomials
m1, m2 ∈ F[x1, . . . , xn] , 1 ≤ i, k ≤ m, and 1 ≤ j ≤ n . This implies in(gi) = m1m2in(gk). From
the definition of minimal Gröbner basis, we know that in(gi) is not a multiple of in(gk), i %= k.
This implies that m1m2 = 1 and i = k. And since m1 and m2 are monic monomials, this implies
that m1 = m2 = 1. Thus we know that in(gi) = in(hj). From lemma 2, we know that the in(gi),
1 ≤ i ≤ m, and in(hj), 1 ≤ j ≤ n are unique. Therefore there is a bijection between
{in(g1), . . . , in(gm)} and {in(h1), . . . , in(hn)}. This implies that m = n, and so any two minimal
Gröbner bases for I have the same size and the same set of leading terms.


