2. Fix an ideal I of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and a monomial order.

Lemma 1: Let I^{\prime} be an ideal generated by monomials m_{1}, \ldots, m_{k}. Then $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is in I^{\prime} if and only if every monomial term f_{i} of f is a multiple of one of the m_{j}.
\Rightarrow If $f \in I^{\prime}, f=a_{1} m_{1}+\cdots a_{k} m_{k}$ for $a_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Each a_{i} is the sum of monomial terms, so for each $1 \leq i \leq k$, if we distribute m_{i} over the monomial terms of a_{i}, f is a sum of monomial terms, each of which has a factor of at least one of the m_{i}. \Leftarrow If every monomial term of f is a multiple of one of the m_{i}, for each $1 \leq i \leq k$, we can "collect" all the monomials that are multiples of that m_{i} and factor m_{i} out, thereby expressing f in the form $f=b_{1} m_{1}+\cdots b_{k} m_{k}$ for $b_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. which implies that $f \in I^{\prime}$.

Lemma 2: Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be a minimal set of monomials that generate monomial ideal I^{\prime} in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Then each m_{i} is unique, $1 \leq i \leq k$.
Let $f \in I^{\prime}$. From Lemma 1 , every monomial term of f is a multiple of one of the m_{i}. Suppose the m_{i} are not unique, ie suppose that $m_{j}=m_{k}$ for some $j \neq k$. Then we can rewrite each monomial term of f, replacing each occurence of m_{k} with m_{j}, so that each monomial term of f is not a multiple m_{k}. (Note that we replace any m_{k} that appear as monomial coefficients from $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ as well). Then as above, we "collect like terms", factor out the m_{i}, and express f in the form $f=b_{1} m_{1}+\cdots b_{n} m_{n}$ for $b_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, but f will have no term that is a multiple of m_{k}, which contradicts that m_{1}, \ldots, m_{n} is minimal. Therefore each m_{i} is unique.
(a) Prove that $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ is a minimal Gröbner basis for I if and only if the multiset $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ is a minimal generating set for $\operatorname{in}(I)$.
Let $\left\{g_{1}, \ldots, g_{m}\right\}$ be a minimal Gröbner basis for I. Then by the definition of Gröbner basis, $\operatorname{in}(I)=\left\langle\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\rangle$. Suppose $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ is not a minimal generating set for $\operatorname{in}(I)$. Then $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\} \backslash \operatorname{in}\left(g_{i}\right)$ generates $\operatorname{in}(I)$ for some $\operatorname{in}\left(g_{i}\right) \in\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$. Then since $g_{i} \in I, \operatorname{in}\left(g_{i}\right) \in \operatorname{in}(I)$ and in particular, note that $\operatorname{in}\left(g_{i}\right)$ is a monomial. Then from Lemma 1 above, $\operatorname{in}\left(g_{i}\right)$ is a multiple of some $\operatorname{in}\left(g_{j}\right), i \neq j$ from the generating set of $\operatorname{in}(I)$. But this contradicts the definition of a minimal Gröbner basis. Therefore $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ must be a minimal generating set.

Now let $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ be a minimal generating set for $\operatorname{in}(I)$ and suppose that $\left\{g_{1}, \ldots, g_{m}\right\}$ is not a minimal Gröbner basis for I. Then there is some $\operatorname{in}\left(g_{j}\right)$ that is a multiple of some $\operatorname{in}\left(g_{k}\right)$, $j \neq k$. But this implies that $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ is not minimal, which is a contradiction. Therefore $\left\{g_{1}, \ldots, g_{m}\right\}$ is a minimal Gröbner basis for I.

(b) Prove that any two minimal Gröbner bases for I have the same size and the same set of leading terms

Let $\left\{g_{1}, \ldots, g_{m}\right\}$ and $\left\{h_{1}, \ldots, h_{n}\right\}$ be two minimal Gröbner bases for I. Then from part a, $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ and $\left\{\operatorname{in}\left(h_{1}\right), \ldots, \operatorname{in}\left(h_{n}\right)\right\}$ are minimal monomial generating sets for $\operatorname{in}(I)$. Then by lemma $1, \operatorname{in}\left(g_{i}\right)=m_{1} \operatorname{in}\left(h_{j}\right)$ and $\operatorname{in}\left(h_{j}\right)=m_{2} \operatorname{in}\left(g_{k}\right)$ for some monic monomials $m_{1}, m_{2} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right], 1 \leq i, k \leq m$, and $1 \leq j \leq n$. This implies in $\left(g_{i}\right)=m_{1} m_{2} \operatorname{in}\left(g_{k}\right)$. From the definition of minimal Gröbner basis, we know that $\operatorname{in}\left(g_{i}\right)$ is not a multiple of $\operatorname{in}\left(g_{k}\right), i \neq k$. This implies that $m_{1} m_{2}=1$ and $i=k$. And since m_{1} and m_{2} are monic monomials, this implies that $m_{1}=m_{2}=1$. Thus we know that $\operatorname{in}\left(g_{i}\right)=\operatorname{in}\left(h_{j}\right)$. From lemma 2, we know that the in $\left(g_{i}\right)$, $1 \leq i \leq m$, and $\operatorname{in}\left(h_{j}\right), 1 \leq j \leq n$ are unique. Therefore there is a bijection between $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ and $\left\{\operatorname{in}\left(h_{1}\right), \ldots, \operatorname{in}\left(h_{n}\right)\right\}$. This implies that $m=n$, and so any two minimal Gröbner bases for I have the same size and the same set of leading terms.

