1a. Let S be any subset of P, and let M be the set of minimal monomials of S. Assume by contradiction that M is infinite (but of course, countable), so we can write $M=\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$. Consider the graph G whose vertices are the monomials in M, and with an edge between any two distinct vertices. We are going to color the edges of G using the colors $\{1,2, \ldots, n\}$ in the following way: If $i<j$ then the monomials m_{i} and m_{j} are not comparable by divisibility (since they are both minimal elements of S), so there exists some index $c \in\{1,2, \ldots, n\}$ such that the exponent of the variable x_{c} in m_{i} is greater than the exponent of x_{c} in m_{j} (otherwise m_{i} would divide m_{j}). We will color the edge between m_{i} and m_{j} of this color c.

Now, we have an infinite complete graph whose edges are colored with finitely many colors, so by the Infinite Ramsey Theorem (see http://en.wikipedia.org/wiki/Ramsey's_theorem) we know that there is an infinite monochromatic complete subgraph, that is, there is a subset $N=\left\{m_{i_{1}}, m_{i_{2}}, m_{i_{3}}, \ldots\right\}$ of M such that all the edges between elements of N have the same color c_{0}. But then, by the definition of our coloring, this means that the exponents of $x_{c_{0}}$ in the monomials $m_{i_{1}}, m_{i_{2}}, m_{i_{3}}, \ldots$ form an infinite decreasing sequence of non-negative integers, which is of course a contradiction.

