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1. (a) Let P be the partially ordered set of (monic) monomials in the variables x1, . . . , xn, where
m1 ≤ m2 if and only if m1 divides m2. Give a combinatorial proof (without using Hilbert’s
basis theorem) of the fact that any subset of P has a finite number of minimal elements.

Let us identify P with Zn
≥0, where each monomial is represented by its multideg vector. Then

for monomials m1 = (a1, . . . , an) and m2 = (b1, . . . , bn), we have m1 ≤ m2 in our partial order
whenever ai ≤ bi for all i ∈ {1, . . . , n}. Now let S ⊂ P . Let m = (a1, . . . , an) be any minimal
element of S (if there are none, we’re done). Now for each i ∈ {1, . . . , n} and j ∈ {0, . . . , ai − 1},
define the slice of S given by Tij := {(b1, . . . , bn) ∈ S | bi = j}. Clearly, there are only finitely
many such slices, and all of the minimal elements of S other than m must be in one of those slices
(otherwise, they would be strictly larger than m). Furthermore, each slice has only n− 1 “dimen-
sions” (that is, it looks like a subset of Zn−1

≥0 ), simplifying the problem. We may now proceed by
induction, since if each (n− 1)-dimensional slice only has finitely many minimal elements, then
there are finitely many minimal elements total. But in the one-dimensional case, there is clearly
at most one minimal element, so by induction, we have what we wanted.

(b) Use part (a) to show that every ideal of F [x1, . . . , xn] has a finite Grobner basis, and hence is
finitely generated.

Let I be an ideal of F [x1, . . . , xn]. Then consider the set S of monomials in in (I). By (a),
S, under the above partial order, has a finite number of minimal elements, {m1, . . . ,mk}, which
clearly generate in (I) (since any monomial in in (I) is either a multiple of an mi or a minimal
element itself, and hence among the mi). Then since mi ∈ in (I) for each i, there are polynomials
{g1, . . . , gk} ⊂ I such that in (gi) = mi for each i. Thus, since the initial terms of the gi generate
the initial ideal of I, they form a (finite) Gröbner basis.

2. Fix an ideal I of F [x1, . . . , xn] and a monomial order.

(a) Prove that {g1, . . . , gm} ⊂ I is a minimal Gröbner basis for I if and only if the multiset {in (g1) , . . . , in (gm)}
is a minimal generating set for in (I).

Suppose that {g1, . . . , gm} was a Gröbner basis, but not minimal. Then there are i, j, with i %= j,
such that in (gi) |in (gj). But then clearly

{
in (g1) , . . . , ̂in (gj), . . . , in (gm)

}
generates in (I) as well,

so {in (g1) , . . . , in (gm)} is not a minimal generating set. Conversely, if {in (g1) , . . . , in (gm)} is a
generating set for in (I), but not minimal, then there must be some j such that

{
in (g1) , . . . , ̂in (gj), . . . , in (gm)

}

generates in (I) as well. But since in (gj) is a monomial generated by that set, it must be a mul-
tiple of some other in (gi), since there cannot be any cancellation. This means that {g1, . . . , gm}
is not a minimal Gröbner basis.

(b) Prove that any two minimal Gröbner bases for I have the same size and the same set of leading
terms.

By the argument in (1b), the set of minimal monomials of in (I), under the partial order given
by divisibility, as above, is the only minimal generating set of in (I) (since each minimal element
is needed, and no other elements are). Thus every minimal Gröbner basis must by (2a) have the
same set of initial terms (and hence the same number of elements).
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