1. (a) Let P be the partially ordered set of (monic) monomials in the variables x_{1}, \ldots, x_{n}, where $m_{1} \leq m_{2}$ if and only if m_{1} divides m_{2}. Give a combinatorial proof (without using Hilbert's basis theorem) of the fact that any subset of P has a finite number of minimal elements.

Let us identify P with $\mathbf{Z}_{\geq 0}^{n}$, where each monomial is represented by its multideg vector. Then for monomials $m_{1}=\left(a_{1}, \ldots, a_{n}\right)$ and $m_{2}=\left(b_{1}, \ldots, b_{n}\right)$, we have $m_{1} \leq m_{2}$ in our partial order whenever $a_{i} \leq b_{i}$ for all $i \in\{1, \ldots, n\}$. Now let $S \subset P$. Let $m=\left(a_{1}, \ldots, a_{n}\right)$ be any minimal element of S (if there are none, we're done). Now for each $i \in\{1, \ldots, n\}$ and $j \in\left\{0, \ldots, a_{i}-1\right\}$, define the slice of S given by $T_{i j}:=\left\{\left(b_{1}, \ldots, b_{n}\right) \in S \mid b_{i}=j\right\}$. Clearly, there are only finitely many such slices, and all of the minimal elements of S other than m must be in one of those slices (otherwise, they would be strictly larger than m). Furthermore, each slice has only $n-1$ "dimensions" (that is, it looks like a subset of $\mathbf{Z}_{\geq 0}^{n-1}$), simplifying the problem. We may now proceed by induction, since if each $(n-1)$-dimensional slice only has finitely many minimal elements, then there are finitely many minimal elements total. But in the one-dimensional case, there is clearly at most one minimal element, so by induction, we have what we wanted.
(b) Use part (a) to show that every ideal of $\mathbf{F}\left[x_{1}, \ldots, x_{n}\right]$ has a finite Grobner basis, and hence is finitely generated.

Let I be an ideal of $\mathbf{F}\left[x_{1}, \ldots, x_{n}\right]$. Then consider the set S of monomials in in (I). By (a), S, under the above partial order, has a finite number of minimal elements, $\left\{m_{1}, \ldots, m_{k}\right\}$, which clearly generate in (I) (since any monomial in in (I) is either a multiple of an m_{i} or a minimal element itself, and hence among the $\left.m_{i}\right)$. Then since $m_{i} \in$ in (I) for each i, there are polynomials $\left\{g_{1}, \ldots, g_{k}\right\} \subset I$ such that in $\left(g_{i}\right)=m_{i}$ for each i. Thus, since the initial terms of the g_{i} generate the initial ideal of I, they form a (finite) Gröbner basis.

