5. Let $h \in \operatorname{in}_{<}(I)$, since $\left\{g_{1}, \ldots, g_{m}\right\}$ is a Groebner basis for I then

$$
h=q_{1} \mathrm{in}_{<}\left(g_{1}\right)+\cdots+q_{m} \mathrm{in}_{<}\left(g_{m}\right)
$$

distributing the monomials $i n_{<}\left(g_{i}\right)$ in the polynomials q_{i} we obtain a sum of monomials such that each monomial is divisible by $i n_{<}\left(g_{i}\right)$ for some i.
Now let $h \in R$ and $h=m_{1}+\cdots m_{k}$ such that each m_{i} is divisible by $i n_{<}\left(g_{j}\right)$ for some j . These means $h=m_{1}^{\prime} i n_{<}\left(g_{i_{1}}\right)+\cdots+m_{k}^{\prime} i n_{<}\left(g_{i_{k}}\right)$ for $i_{r} \in\{1, \ldots, m\}$ so $h \in \operatorname{in}_{<}(I)$

