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• By the last item and transitivity, it is enough to prove that 0 <β ei for every 1 ≤ i ≤ n: the

canonical vectors are bounded below by 0. Suppose vt is the first vector in β with nonzero i-th

coordinate, which exists because dim(span(β)) = n, then (vt)i > 0 and

vj · ei = vj · 0 = 0 if j < t and

vt · ei = (vt)i > 0 = vt · 0

so 0 <β ei for all i, as we wanted.

d. Suppose we have a monomial ordering <mon and let C be the set of vectors ν ∈ Zn such that

ν = a− b for monomials xb <mon xa.

Result 1. If ν1, ν2 ∈ C and p, q ∈ Q+ then pν1 + qν2 ∈ C whenever pν1 + qν2 ∈ Zn.

Proof. Consider four monomials xb <mon xa and xd <mon xc in F[x1, . . . , xn]. Suppose we have

p, q ∈ Q+ such that ν = p(a − b) + q(c − d) ∈ Zn. It is convenient to explicitly write p and q as

fractions:

p =
pN

pD
, q =

qN

qD
with pD, qD, pN , qN ∈ Z+

We know
(
xb

)pN qD <mon (xa)pN qD and
(
xd

)pDqN <mon (xc)pDqN . Defining

f = pNqDa + pDqNc

g = pNqDb + pDqNd

we have xg <mon xf so f − g ∈ C. It is easy to check that −µ /∈ C whenever µ ∈ C. Now, choose

e ∈ Zn
≥0 so that e + ν ∈ Zn

≥0, then (xe)pDqD = xpDqDe and (xe+ν)pDqD = xpDqDe+f−g. Because

f − g is in C and <mon is a total ordering on monomials, we have xpDqDe <mon xpDqDe+f−g so

(xe)pDqD <mon (xe+ν)pDqD . But then it must be true that xe <mon xe+ν so ν ∈ C. !

Suppose we are given a finite number of vectors ν1, ν2, . . . , νm ∈ C and consider the convex combi-

nation

(1)
m∑

i=1

riνi = 0
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with r1, . . . , rm ∈ R+. Clearly m ≥ 2. Let M be the n×m matrix with i-th column equal to νi and let

r = (r1, . . . , rm). The null space of the linear map LM induced by M is nontrivial because LM (r) = 0

and has a basis β consisting of vectors in Qm. This may be checked by Gaussian elimination on M .

Say β = {u1, . . . , ul} and write r = c1u1 + · · · + clul. As r lies in Rm
+ we may find rationals c∗1, . . . , c

∗
l

sufficiently close to c1, . . . , cl (respectively) such that q = c∗1u1 + · · · + c∗l ul has positive components,

i.e. q ∈ Qm
+ . We can choose these rational coefficients so that the components of q add up to 1. But

then LM (q) = 0 and we have the rational convex combination

m∑

i=1

(q)iνi = 0

More conveniently, we have positive integers n1, . . . , nm such that

m∑

i=1

niνi = 0

Using Result 1 inductively we obtain a contradiction because clearly 0 /∈ C. Note Equation 1 holds for

vectors ν1, . . . , νm ∈ C iff 0 lies in the convex hull of C, denoted by ch(C). Thus 0 /∈ ch(C).

One separation theorem in convex analysis shows there exists an hyperplane H(1) of Rn separating

(not necessarily strictly) 0 and ch(C), i.e. there exists a vector v1 ∈ Rn\ {0} such that v1 · x ≥ 0 for

all x ∈ ch(C). Actually v1 has nonnegative components because C contains the canonical basis of Rn.

Moreover, if µ is a vector in Zn\ {0} such that v1 · µ > 0 then µ lies in C because either µ ∈ C or

−µ ∈ C holds and in the later case we would have v1 · µ ≤ 0. We may simply define H(1) = v⊥1 , the

orthogonal complement of v1.

Now, define the set C(1) = H(1) ∩ C. If C(1) = ∅ then we are done and we can tell apart any

element of C via taking the dot product with v1. Otherwise, notice that 0 /∈ ch(C(1)). Extending

the separation theorem to arbitrary vector subspaces of Rn we can find an hyperplane H(2) of H(1)

separating 0 and ch(C(1)), or equivalently, a vector v2 ∈ H(1)\ {0} such that v2 · x ≥ 0 for all

x ∈ ch(C(1)) so that H(2) = v⊥1 ∩ v⊥2 . Again, if for some µ ∈ Zn\ {0} we have v1 · µ = 0 and

v2 · µ > 0, then µ lies in C(1) ⊆ C. We then define C(2) = H(2) ∩ C(1) and ask whether C(2) = ∅.

If true, we can tell apart vectors in C via first taking their dot product with v1 and, in case of a 0,

subsequently taking the product with v2, which would suffice. If not true, we continue our inductive
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process until we stop. It will have to stop necessarily when we find n vectors v1, v2, . . . , vn: they are

pairwise orthogonal by construction, so by linear independence they form a basis of Rn and we would

have C(n) = H(n) ∩ C(n−1) =
(
v⊥1 ∩ v⊥2 ∩ · · · ∩ v⊥n

)
∩ C(n−1) ⊆ {0} ∩ C = ∅. In any case, we could

complete the orthogonal basis without affecting the weight order.

5. Notice in<(I) = 〈in<(g1), in<(g2), . . . , in<(gm)〉. If h is in in<(I) then h =
∑m

i=1 fiin<(gi) for

some f1, . . . , fm ∈ F[x1, . . . , xn]. Writing fi =
∑ni

j=1 cijxaij we have h =
∑m

i=1

∑ni
j=1 cij (xaij in<(gi))

which is a sum of monomials each of which is divided by in<(gi) for some i. Now suppose h can be

written as a sum of monomials, each one of which is divisible by in<(gi). Ordering terms and factoring

we then can write
∑m

i=1

(∑ni
j=1 cijxaij

)
in<(gi) or

∑m
i=1 fiin<(gi) for some f1, . . . , fm ∈ F[x1, . . . , xn].

Therefore, h belongs to in<(I).


