d. Suppose we have a monomial ordering $<_{\operatorname{mon}}$ and let C be the set of vectors $\nu \in \mathbb{Z}^{n}$ such that $\nu=a-b$ for monomials $\mathbf{x}^{b}<_{\text {mon }} \mathbf{x}^{a}$.

Result 1. If $\nu_{1}, \nu_{2} \in C$ and $p, q \in \mathbb{Q}+$ then $p \nu_{1}+q \nu_{2} \in C$ whenever $p \nu_{1}+q \nu_{2} \in \mathbb{Z}^{n}$.

Proof. Consider four monomials $\mathbf{x}^{b}<_{\operatorname{mon}} \mathbf{x}^{a}$ and $\mathbf{x}^{d}<_{\operatorname{mon}} \mathbf{x}^{c}$ in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Suppose we have $p, q \in \mathbb{Q}_{+}$such that $\nu=p(a-b)+q(c-d) \in \mathbb{Z}^{n}$. It is convenient to explicitly write p and q as fractions:

$$
p=\frac{p_{N}}{p_{D}}, q=\frac{q_{N}}{q_{D}} \text { with } p_{D}, q_{D}, p_{N}, q_{N} \in \mathbb{Z}_{+}
$$

We know $\left(\mathbf{x}^{b}\right)^{p_{N} q_{D}}<_{\text {mon }}\left(\mathbf{x}^{a}\right)^{p_{N} q_{D}}$ and $\left(\mathbf{x}^{d}\right)^{p_{D} q_{N}}<_{\text {mon }}\left(\mathbf{x}^{c}\right)^{p_{D} q_{N}}$. Defining

$$
\begin{aligned}
& f=p_{N} q_{D} a+p_{D} q_{N} c \\
& g=p_{N} q_{D} b+p_{D} q_{N} d
\end{aligned}
$$

we have $\mathbf{x}^{g}<_{\operatorname{mon}} \mathbf{x}^{f}$ so $f-g \in C$. It is easy to check that $-\mu \notin C$ whenever $\mu \in C$. Now, choose $e \in \mathbb{Z}_{\geq 0}^{n}$ so that $e+\nu \in \mathbb{Z}_{\geq 0}^{n}$, then $\left(\mathbf{x}^{e}\right)^{p_{D} q_{D}}=\mathbf{x}^{p_{D} q_{D} e}$ and $\left(\mathbf{x}^{e+\nu}\right)^{p_{D} q_{D}}=\mathbf{x}^{p_{D} q_{D} e+f-g}$. Because $f-g$ is in C and $<_{\text {mon }}$ is a total ordering on monomials, we have $\mathbf{x}^{p_{D} q_{D} e}<_{\operatorname{mon}} \mathbf{x}^{p_{D} q_{D} e+f-g}$ so $\left(\mathbf{x}^{e}\right)^{p_{D} q_{D}}<_{\text {mon }}\left(\mathbf{x}^{e+\nu}\right)^{p_{D} q_{D}}$. But then it must be true that $\mathbf{x}^{e}<_{\operatorname{mon}} \mathbf{x}^{e+\nu}$ so $\nu \in C$.

Suppose we are given a finite number of vectors $\nu_{1}, \nu_{2}, \ldots, \nu_{m} \in C$ and consider the convex combination

$$
\begin{equation*}
\sum_{i=1}^{m} r_{i} \nu_{i}=0 \tag{1}
\end{equation*}
$$

with $r_{1}, \ldots, r_{m} \in \mathbb{R}_{+}$. Clearly $m \geq 2$. Let M be the $n \times m$ matrix with i-th column equal to ν_{i} and let $r=\left(r_{1}, \ldots, r_{m}\right)$. The null space of the linear map L_{M} induced by M is nontrivial because $L_{M}(r)=0$ and has a basis β consisting of vectors in \mathbb{Q}^{m}. This may be checked by Gaussian elimination on M. Say $\beta=\left\{u_{1}, \ldots, u_{l}\right\}$ and write $r=c_{1} u_{1}+\cdots+c_{l} u_{l}$. As r lies in \mathbb{R}_{+}^{m} we may find rationals $c_{1}^{*}, \ldots, c_{l}^{*}$ sufficiently close to c_{1}, \ldots, c_{l} (respectively) such that $q=c_{1}^{*} u_{1}+\cdots+c_{l}^{*} u_{l}$ has positive components, i.e. $q \in \mathbb{Q}_{+}^{m}$. We can choose these rational coefficients so that the components of q add up to 1 . But then $L_{M}(q)=0$ and we have the rational convex combination

$$
\sum_{i=1}^{m}(q)_{i} \nu_{i}=0
$$

More conveniently, we have positive integers n_{1}, \ldots, n_{m} such that

$$
\sum_{i=1}^{m} n_{i} \nu_{i}=0
$$

Using Result 1 inductively we obtain a contradiction because clearly $0 \notin C$. Note Equation 1 holds for vectors $\nu_{1}, \ldots, \nu_{m} \in C$ iff 0 lies in the convex hull of C, denoted by $\operatorname{ch}(C)$. Thus $0 \notin \operatorname{ch}(C)$.

One separation theorem in convex analysis shows there exists an hyperplane $H^{(1)}$ of \mathbb{R}^{n} separating (not necessarily strictly) 0 and $\operatorname{ch}(C)$, i.e. there exists a vector $v_{1} \in \mathbb{R}^{n} \backslash\{0\}$ such that $v_{1} \cdot x \geq 0$ for all $x \in \operatorname{ch}(C)$. Actually v_{1} has nonnegative components because C contains the canonical basis of \mathbb{R}^{n}. Moreover, if μ is a vector in $\mathbb{Z}^{n} \backslash\{0\}$ such that $v_{1} \cdot \mu>0$ then μ lies in C because either $\mu \in C$ or $-\mu \in C$ holds and in the later case we would have $v_{1} \cdot \mu \leq 0$. We may simply define $H^{(1)}=v_{1}^{\perp}$, the orthogonal complement of v_{1}.

Now, define the set $C^{(1)}=H^{(1)} \cap C$. If $C^{(1)}=\emptyset$ then we are done and we can tell apart any element of C via taking the dot product with v_{1}. Otherwise, notice that $0 \notin \operatorname{ch}\left(C^{(1)}\right)$. Extending the separation theorem to arbitrary vector subspaces of \mathbb{R}^{n} we can find an hyperplane $H^{(2)}$ of $H^{(1)}$ separating 0 and $\operatorname{ch}\left(C^{(1)}\right)$, or equivalently, a vector $v_{2} \in H^{(1)} \backslash\{0\}$ such that $v_{2} \cdot x \geq 0$ for all $x \in \operatorname{ch}\left(C^{(1)}\right)$ so that $H^{(2)}=v_{1}^{\perp} \cap v_{2}^{\perp}$. Again, if for some $\mu \in \mathbb{Z}^{n} \backslash\{0\}$ we have $v_{1} \cdot \mu=0$ and $v_{2} \cdot \mu>0$, then μ lies in $C^{(1)} \subseteq C$. We then define $C^{(2)}=H^{(2)} \cap C^{(1)}$ and ask whether $C^{(2)}=\emptyset$. If true, we can tell apart vectors in C via first taking their dot product with v_{1} and, in case of a 0 , subsequently taking the product with v_{2}, which would suffice. If not true, we continue our inductive

$$
\text { process until we stop. It will have to stop necessarily when we find } n \text { vectors } v_{1}, v_{2}, \ldots, v_{n} \text { : they are }
$$

