d. Suppose we have a monomial ordering <ion and let C' be the set of vectors v € Z™ such that

v = a — b for monomials x <,,on X%.

Result 1. If v1,v5 € C and p,q € Q4 then pvy + qus € C whenever pvy + quo € Z7.

Proof. Consider four monomials x? <mon X® and x% <pon X© in Flx1,...,zn]. Suppose we have
p,q € Q4 such that v = p(a — b) + q(c — d) € Z™. It is convenient to explicitly write p and ¢ as
fractions:
PN gnN
= —, q =

— with pp,qp,pN,qn € Z4
PD 4dD

We know (x2)"M” < o0 (x®)PNP and (x?)"PIN < 00 (x€)PPIN. Defining
f=pNapa+ppanc
9 =pnNgpb + ppgnd
we have x9 <pon X/ so f —g € C. It is easy to check that —u ¢ C whenever € C. Now, choose

e € 7%, so that e + v € Z2, then (x°)PPIP = xPpipe and (x“+V)PPIP = xPpapet/=9  Because

f—gisin C and <pon is a total ordering on monomials, we have xPPID¢ < . xPDIpe+f=9 5o

(x6)PPIP < on (x6TV)PPIP | But then it must be true that x° <,,on x¢™ so v € C. O
Suppose we are given a finite number of vectors v, 19, ..., vy, € C' and consider the convex combi-
nation

(1) iriw =0
i=1



with 71, ..., 7, € Ry. Clearly m > 2. Let M be the n x m matrix with i-th column equal to v; and let
r=(r1,...,7m). The null space of the linear map L, induced by M is nontrivial because Ly/(r) =0
and has a basis 3 consisting of vectors in Q™. This may be checked by Gaussian elimination on M.
Say 3 = {u1,...,w} and write r = cju1 + - - - + qug. As r lies in R we may find rationals cj, ..., ¢}
sufficiently close to c1,...,c; (respectively) such that ¢ = cju; + - - - + ¢ju; has positive components,
ie. ¢ € Q. We can choose these rational coefficients so that the components of ¢ add up to 1. But
then Lj/(¢) = 0 and we have the rational convex combination

m

Z(Q)M =0
i=1
More conveniently, we have positive integers ni,...,n,, such that

m
E n;V; = 0
i=1

Using Result 1 inductively we obtain a contradiction because clearly 0 ¢ C. Note Equation 1 holds for

vectors vy, ..., vy, € Ciff 0 lies in the convex hull of C, denoted by ch(C). Thus 0 ¢ ch(C).

One separation theorem in convex analysis shows there exists an hyperplane H(}) of R™ separating
(not necessarily strictly) 0 and ch(C'), i.e. there exists a vector v; € R™\ {0} such that vy -z > 0 for
all x € ch(C). Actually v; has nonnegative components because C' contains the canonical basis of R™.
Moreover, if p is a vector in Z™\ {0} such that v; - u > 0 then p lies in C' because either y € C or
—u € C holds and in the later case we would have v; - u < 0. We may simply define H(1) = vf, the

orthogonal complement of v;.

Now, define the set CV) = HO N . If C = @ then we are done and we can tell apart any
element of C' via taking the dot product with v;. Otherwise, notice that 0 ¢ ch(C")). Extending
the separation theorem to arbitrary vector subspaces of R™ we can find an hyperplane H® of H(1)
separating 0 and ch(C(), or equivalently, a vector vo € HM\ {0} such that vy - 2 > 0 for all
z € ch(CW) so that H?) = v Nwg. Again, if for some p € Z"\ {0} we have v; - = 0 and
vy - > 0, then 1 lies in C(M) C C. We then define C? = H® 0 (M) and ask whether C?) = §.
If true, we can tell apart vectors in C via first taking their dot product with v; and, in case of a 0,

subsequently taking the product with vs, which would suffice. If not true, we continue our inductive



process until we stop. It will have to stop necessarily when we find n vectors vy, vs,...,v,: they are
pairwise orthogonal by construction, so by linear independence they form a basis of R and we would
have ™ = H®W N C=D = (v nvy N---Not) NC™=D C {0} N C = 0. In any case, we could

complete the orthogonal basis without affecting the weight order.



