
(c) The weighted ordering of basis B = {v1, . . . , vn} of Rn is a monomial ordering if and
only if for every k ∈ [n] the smallest vj whose k-th is non-zero 7 has a positive k-th
coordinate. We proof both directions separately.
⇒) Suppose that the weighted ordering ”<” of B is a monomial ordering. Let k ∈ [n]
and consider the monomial xk. Since ”<” is a monomial order xk > 1. It follows that
the first vector vi such that multideg(xk) · vi #= 0 must contain a positve k-th entrance,
because the dot product is supposed to be greater than 0 (otherwise we have that 1 > xk)
since the only non-zero entrance of multideg(xk) is the k-th one. The result follows.
⇐) Suppose that for every k ∈ [n] the smallest vj whose k-th is non-zero has a pos-
itive k-th coordinate. Let m #= 1 be a monomial. Note that the smallest vector vi

such that multideg(m) · vi #= 0 contains only nonnegative entries on the entries where
multideg(m) has non-zero entries (becuase it is the first time a non-zero number appears
on those special coordinates). Therefore m ≥ 1. Suppose now that m1 > m2 and let
m be any monomial. We have that multideg(mmi) = multideg(m) + multideg(mi) so
multideg(mm1) · vi−multideg(mm2) · vi = multideg(m1) · vi−multideg(m2) · vi. So the
vi thus mm1 > mm2 because the smallest vector that makes different m1 and m2 is the
smallest vector that makes mm1 and mm2 different. It remains to prove that the order
relation defined is total. Let A the n × n matrix whose k − th row is vk and consider
the map f : Rn → Rn given by f(x) := Ax. This is a bijection because B is a basis
for Rn. But the k-th entrance of the new vector Ax is vk · x. AS a particular result we
obtain that for every pair of distinct vectors ui, uj in Zn

≥0 there is some vk ∈ B such that
ui · vk #= uj · vk (by the bijectivity of f), yielding a way to compare both vectors on the
defined order. So the order is total and we are done.

5. in<(I) = 〈in<(g1), . . . , in<(gm)〉 becuase {g1, . . . , gm} is a Gröbner basis. Thus for every
h ∈ in<(I) there exist polynomials p1, . . . , pn such that h =

∑m
j=1 pj(in<(gj)). Hence every

monomial in h appears in a product of the form pi(in≤(gi)). This means that every monomial
of h is divisible by in<(gi) for some i. Now suppose that every monomial of h is divisible by
in<(gi) for some i. We have that every monomial I of h belongs to I because in<(gi) ∈ I
for all i. Since I equipped with the polynomial addition is an additive group, we have that h
being the sum of finitely many monomials that are members of I, is a member of I as desired.

7The smallest vj is the vector having the smallest index. vj exists because B is a basis for Rn
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