(c) The weighted ordering of basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of R^{n} is a monomial ordering if and only if for every $k \in[n]$ the smallest v_{j} whose k-th is non-zero ${ }^{7}$ has a positive k-th coordinate. We proof both directions separately.
$\Rightarrow)$ Suppose that the weighted ordering " $<$ " of B is a monomial ordering. Let $k \in[n]$ and consider the monomial x_{k}. Since " $<$ " is a monomial order $x_{k}>1$. It follows that the first vector v_{i} such that multideg $\left(x_{k}\right) \cdot v_{i} \neq 0$ must contain a positve k-th entrance, because the dot product is supposed to be greater than 0 (otherwise we have that $1>x_{k}$) since the only non-zero entrance of $\operatorname{multideg}\left(x_{k}\right)$ is the k-th one. The result follows.
$\Leftarrow)$ Suppose that for every $k \in[n]$ the smallest v_{j} whose k-th is non-zero has a positive k-th coordinate. Let $m \neq 1$ be a monomial. Note that the smallest vector v_{i} such that multideg $(m) \cdot v_{i} \neq 0$ contains only nonnegative entries on the entries where multideg (m) has non-zero entries (becuase it is the first time a non-zero number appears on those special coordinates). Therefore $m \geq 1$. Suppose now that $m_{1}>m_{2}$ and let m be any monomial. We have that multideg $\left(m m_{i}\right)=\operatorname{multideg}(m)+\operatorname{multideg}\left(m_{i}\right)$ so $\operatorname{multideg}\left(m m_{1}\right) \cdot v_{i}-\operatorname{multideg}\left(m m_{2}\right) \cdot v_{i}=\operatorname{multideg}\left(m_{1}\right) \cdot v_{i}-\operatorname{multideg}\left(m_{2}\right) \cdot v_{i}$. So the v_{i} thus $m m_{1}>m m_{2}$ because the smallest vector that makes different m_{1} and m_{2} is the smallest vector that makes $m m_{1}$ and $m m_{2}$ different. It remains to prove that the order relation defined is total. Let A the $n \times n$ matrix whose $k-t h$ row is v_{k} and consider the map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f(x):=A x$. This is a bijection because B is a basis for \mathbb{R}^{n}. But the k-th entrance of the new vector $A x$ is $v_{k} \cdot x$. AS a particular result we obtain that for every pair of distinct vectors u_{i}, u_{j} in $\mathbb{Z}_{\geq 0}^{n}$ there is some $v_{k} \in B$ such that $u_{i} \cdot v_{k} \neq u_{j} \cdot v_{k}$ (by the bijectivity of f), yielding a way to compare both vectors on the defined order. So the order is total and we are done.

