3. The grevlex order.
(a) Prove that grevlex is a monomial ordering
(b) Prove that the grevlex orderings on $\mathbf{F}\left[x_{1}, x_{2}\right]$ coincide wi the grlex orderings, bu the grevlex orderings on $\mathbf{F}\left[x_{1}, x_{2}, x_{3}\right]$ are not grlex orderings.
(c) Order the monomials in lex, grlex, and grevlex.
(a) Grevlex is a monomial ordering.

Proof. (Every two monomials are comparable:) Let $m_{1}=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$, $m_{2}=x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ and $x_{1}>x_{2}>\cdots>x_{n}$. First we'll show that every two monomials are comparable. Suppose $m_{1} \neq m_{2}$. Then either deg $m_{1} \neq \operatorname{deg} m_{2}$ or $\operatorname{deg} m_{1}=\operatorname{deg} m_{2}$ and there exists an i such that $a_{i} \neq b_{i}$ and $a_{i+1}=b_{i+1}, \ldots, a_{n}=b_{n}$. So either $m_{1}>m_{2}$ or $m_{2}>m_{1}$.
(Transitivity:)Suppose that $m_{1}>m_{2}>m_{3}$ with m_{1}, m_{2} as before and $m_{3}=x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$. If $\operatorname{deg} m_{1}>\operatorname{deg} m_{2}$ or $\operatorname{deg} m_{2}>\operatorname{deg} m_{3}$ then $\operatorname{deg} m_{1}>$ $\operatorname{deg} m_{3}$ and $m_{1}>m_{3}$. If not then $\operatorname{deg} m_{1}=\operatorname{deg} m_{2}=\operatorname{deg} m_{3}$. Since $m_{1}>m_{2}$ there exists an i such that $a_{i}<b_{i}$ and $a_{i+1}=b_{i+1}, \ldots, a_{n}=b_{n}$. Similarly there exits a j such that $b_{j}<c_{j}$ and $b_{j+1}=c_{j+1}, \ldots, b_{n}=c_{n}$. If $i \leq j$ then $a_{j} \leq b_{j}<c_{j}$ and $a_{j+1}=c_{j+1}, \ldots a_{n}=c_{n}$. If $i>j$ then $a_{i}<b_{i}=c_{i}$ and $a_{i+1}=c_{i+1}, \ldots a_{n}=c_{n}$. So $m_{1}>m_{3}$.
$(1<m)$: Every monomial has a degree greater than 0.
$\left(m_{1}>m_{2} \rightarrow m m_{1}>m m_{2}\right)$: Let m_{1}, m_{2} be as above and $m=$ $x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}$. Assume that $m_{1}>m_{2}$. If deg $m_{1}>\operatorname{deg} m_{2}$ then $\operatorname{deg} m m_{1}=$ $\operatorname{deg} m+\operatorname{deg} m_{1}>\operatorname{deg} m+\operatorname{deg} m_{2}=\operatorname{deg} m m_{2}$. If $\operatorname{deg} m_{1}=\operatorname{deg} m_{2}$ then there exists an i such that $a_{i}<b_{i}$ and $a_{i+1}=b_{i+1}, \ldots, a_{n}=b_{n}$. Then $m m_{1}=x_{1}^{a_{1}+d_{1}} \ldots x_{n}^{a_{n}+d_{n}}, m m_{2}=x_{1}^{b_{1}+d_{1}} \ldots x_{n}^{b_{n}+d_{n}}$ and $a_{i}+d_{i}<b_{i}+d_{i}$ and $a_{i+1}+d_{i+1}=b_{i+1}+d_{i+1}, \ldots, a_{n}+d_{n}=b_{n}+d_{n}$. So $m m_{1}>m m_{2} . \quad \square$
(b) Grevlex coincides with grlex on $\mathbf{F}\left[x_{1}, x_{2}\right]$.

Proof. Let $m_{1}=x_{1}^{a_{1}} x_{2}^{a_{2}}$ and $m_{2}=x_{1}^{b_{1}} x_{2}^{b_{2}}$. Assume that $m_{1} \neq m_{2}$. If $\operatorname{deg} m_{1}>\operatorname{deg} m_{2}$ then $m_{1}>m_{2}$ in both grevlex and grlex. Suppose deg $m_{1}=\operatorname{deg} m_{2}$. Then either $a_{1}>b_{1}$ or $a_{1}<b_{1}$. Suppose that $a_{1}>b_{1}$. Then $m_{1}>m_{2}$ in grlex. But since $a_{1}>b_{1}$ we must have $a_{2}<b_{2}$ so $m_{1}>m_{2}$ in grevlex. This doesn't work in $\mathbf{F}[x, y, z]$. Take for example $m_{1}=x^{3} y z^{2}$ and $m_{2}=x y^{4} z$. Then $m_{1}>m_{2}$ in grlex but $m_{2}>m_{1}$ in grevlex.
(c) Proof. In lex: $x^{3} y>x^{3} z^{2}>x^{2} y^{2} z>x^{2} y z^{2}>x^{2} z^{2}>x^{2} z>x^{2}>x y^{2} z$. In grlex: $x^{3} z^{2}>x^{2} y^{2} z>x^{2} y z^{2}>x^{3} y>x^{2} z^{2}>x y^{2} z>x^{2} z>x^{2}$. In grevlex: $x^{2} y^{2} z>x^{3} z^{2}>x^{2} y z^{2}>x^{3} y>x y^{2} z>x^{2} z^{2}>x^{2} z>x^{2}$.

