homework two due: wed. feb. 18 (sf) / vie. 20 de feb. (bog)

Note. You are encouraged to work together on the homework, but you must state who you worked with. You must write your solutions independently and in your own words. If you are turning in your homework by email, please send it to cca.acc.cca@gmail.com.

1. A proof of Hilbert's basis theorem using Gröbner bases.
(a) Let $P$ be the partially ordered set of (monic) monomials in the variables $x_{1}, \ldots, x_{n}$, where $m_{1} \leq m_{2}$ if and only if $m_{1}$ divides $m_{2}$. Give a combinatorial proof (without using Hilbert's basis theorem) of the fact that any subset of $P$ has a finite number of minimal elements.
(b) Use part (a) to show that every ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ has a finite Gröbner basis, and hence is finitely generated.
2. Minimal Gröbner bases. Fix an ideal $I$ of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and a monomial order.
(a) Prove that $\left\{g_{1}, \ldots, g_{m}\right\} \subset I$ is a minimal Gröbner basis for $I$ if and only if the multiset $\left\{\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{m}\right)\right\}$ is a minimal generating set for in $(I)$.
(b) Prove that any two minimal Gröbner bases for $I$ have the same size and the same set of leading terms.
3. Gröbner basis computations. Perform the following computations using Gröbner bases with respect to the lexicographic order $x>y$ (or $x>y>z$ ) in $\mathbb{C}[x, y]$ (or $\mathbb{C}[x, y, z]$ ):
(a) Determine whether $x^{6}-x^{5} y$ is in $\left\langle x^{3}-y, x^{2} y-y^{2}, x y^{2}-y^{2}, y^{3}-y^{2}\right\rangle$.
(b) Determine whether $\left\langle x^{3}-y z, y z+y\right\rangle=\left\langle x^{3} z+x^{3}, x^{3}+y\right\rangle$.
(c) Solve the system of equations $x^{2}-y z=3, y^{2}-x z=4, z^{2}-x y=5$.
(d) Compute $\left\langle x^{3} y-x y^{2}+1, x^{2} y^{2}-y^{3}-1\right\rangle \bigcap\left\langle x^{2}-y^{2}, x^{3}+y^{3}\right\rangle$.
(e) Compute the syzygies between the polynomials $x^{2}, y^{2}$, and $x y+y z$.
4. Hilbert series. Let $I=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right\rangle$ in $\mathbb{F}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, and let $I_{d}$ be the $\mathbb{F}$-vector space of homogeneous polynomials of degree $d$ in $I$. Compute the Hilbert function $H_{I}: \mathbb{N} \rightarrow \mathbb{N}$ and Hilbert series $H(I ; x) \in \mathbb{C}[[x]]$, which are defined to be:

$$
H_{I}(d):=\operatorname{dim}_{\mathbb{F}} I_{d}, \quad \text { and } \quad H(I ; x):=\sum_{n \geq 0} H(d) x^{d},
$$

respectively.
5. Computing free resolutions. Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $I=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Compute a finite free resolution for the $R$-module $R / I$.
6. (Bonus: 10 points) Free resolutions over other rings. Let $m \leq n$ be positive integers, and let $R=\mathbb{F}[x] /\left\langle x^{n}\right\rangle$.
(a) Compute a free resolution for the $R$-module $R /\left\langle x^{m}\right\rangle$.
(b) Prove that the only $R$-modules which have a finite free resolution are the free $R$-modules.

