federico ardila

homework two due: wed. feb. 18 (sf) / vie. 20 de feb. (bog)

Note. You are encouraged to work together on the homework, but you must state who you worked with. You *must* write your solutions independently and in your own words. If you are turning in your homework by email, please send it to cca.acc.cca@gmail.com.

- 1. A proof of Hilbert's basis theorem using Gröbner bases.
 - (a) Let P be the partially ordered set of (monic) monomials in the variables x_1, \ldots, x_n , where $m_1 \leq m_2$ if and only if m_1 divides m_2 . Give a combinatorial proof (without using Hilbert's basis theorem) of the fact that any subset of P has a finite number of minimal elements.
 - (b) Use part (a) to show that every ideal of $\mathbb{F}[x_1, \ldots, x_n]$ has a finite Gröbner basis, and hence is finitely generated.
- 2. Minimal Gröbner bases. Fix an ideal I of $\mathbb{F}[x_1, \ldots, x_n]$ and a monomial order.
 - (a) Prove that $\{g_1, \ldots, g_m\} \subset I$ is a minimal Gröbner basis for I if and only if the multiset $\{in(g_1), \ldots, in(g_m)\}$ is a minimal generating set for in(I).
 - (b) Prove that any two minimal Gröbner bases for I have the same size and the same set of leading terms.
- 3. Gröbner basis computations. Perform the following computations using Gröbner bases with respect to the lexicographic order x > y (or x > y > z) in $\mathbb{C}[x, y]$ (or $\mathbb{C}[x, y, z]$):
 - (a) Determine whether $x^6 x^5 y$ is in $\langle x^3 y, x^2 y y^2, xy^2 y^2, y^3 y^2 \rangle$.
 - (b) Determine whether $\langle x^3 yz, yz + y \rangle = \langle x^3z + x^3, x^3 + y \rangle$.
 - (c) Solve the system of equations $x^2 yz = 3$, $y^2 xz = 4$, $z^2 xy = 5$.
 - (d) Compute $\langle x^3y xy^2 + 1, x^2y^2 y^3 1 \rangle \bigcap \langle x^2 y^2, x^3 + y^3 \rangle$.
 - (e) Compute the syzygies between the polynomials x^2 , y^2 , and xy + yz.
- 4. Hilbert series. Let $I = \langle x_1 x_3, x_1 x_4, x_2 x_4 \rangle$ in $\mathbb{F}[x_1, x_2, x_3, x_4]$, and let I_d be the \mathbb{F} -vector space of homogeneous polynomials of degree d in I. Compute the Hilbert function $H_I : \mathbb{N} \to \mathbb{N}$ and Hilbert series $H(I; x) \in \mathbb{C}[[x]]$, which are defined to be:

$$H_I(d) := \dim_{\mathbb{F}} I_d, \quad \text{and} \quad H(I;x) := \sum_{n \ge 0} H(d) x^d,$$

respectively.

- 5. Computing free resolutions. Let $R = \mathbb{F}[x_1, \ldots, x_n]$ and $I = \langle x_1, \ldots, x_n \rangle$. Compute a finite free resolution for the *R*-module *R*/*I*.
- 6. (Bonus: 10 points) Free resolutions over other rings. Let $m \le n$ be positive integers, and let $R = \mathbb{F}[x]/\langle x^n \rangle$.
 - (a) Compute a free resolution for the *R*-module $R/\langle x^m \rangle$.
 - (b) Prove that the only *R*-modules which have a finite free resolution are the free *R*-modules.