homework one (due wed. feb. 4 (sf) or fri. feb. 6 (bog))
Note. You are encouraged to work together on the homework, but you must state who you worked with. You must write your solutions independently and in your own words. You may turn in your homework a paper copy in class in SF, or by email before midnight at cca.acc.cca@gmail.com.

0 . Register in the online discussion forum, following the instructions on the course website.

1. A non-Noetherian ring. Let R be the ring of continuous real valued functions on $[0,1]$. Find an ideal of R which is not finitely generated.
2. Finite intervals. Say a monomial ordering of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ has the finite interval property if for any monomials a, b with $a<b$ there exist finitely many monomials c such that $a<c<b$. Does the grlex order have the finite interval property? Does every monomial ordering have the finite interval property?
3. The grevlex order. The grevlex (graded reverse lexicographic) order of the monomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is defined by first choosing an ordering of the variables, say $x_{1}>\cdots>x_{n}$ and then defining $m_{1} \geq m_{2}$ for monomials m_{1}, m_{2} if either
o $\quad \operatorname{deg} m_{1}>\operatorname{deg} m_{2}$, or
o $\quad \operatorname{deg} m_{1}=\operatorname{deg} m_{2}$ and the first exponent of $x_{n}, x_{n-1}, \ldots, x_{1}$ (in that order) where m_{1} and m_{2} differ is smaller in m_{1}.
(a) Prove that grevlex is a monomial ordering.
(b) Prove that the grevlex orderings on $\mathbb{F}\left[x_{1}, x_{2}\right]$ coincide with the grlex orderings, but the grevlex orderings on $\mathbb{F}\left[x_{1}, x_{2}, x_{3}\right]$ are not grlex orderings.
(c) Using $x>y>z$, order the monomials $x^{2} z, x^{2} y^{2} z, x y^{2} z, x^{3} y, x^{3} z^{2}, x^{2}, x^{2} y z^{2}, x^{2} z^{2}$ with respect to lex, with respect to grlex, and with respect to grevlex.
4. A geometric characterization of term orders. Let v_{1}, \ldots, v_{n} form a basis of \mathbb{R}^{n}. Define the weight order \geq on the monomials of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ by setting $m_{1}>m_{2}$ if and only if for some $t \leq n$ we have

$$
\begin{aligned}
v_{i} \cdot \operatorname{multideg}\left(m_{1}\right) & =v_{i} \cdot \operatorname{multideg}\left(m_{2}\right) \text { for } 1 \leq i \leq t-1, \text { and } \\
v_{t} \cdot \operatorname{multideg}\left(m_{1}\right) & >v_{t} \cdot \operatorname{multideg}\left(m_{2}\right),
\end{aligned}
$$

where - denotes the dot product.
(a) If $v_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ (with a 1 in the i th coordinate) for $1 \leq i \leq n$, show that the weight order is the lexicographic order with $x_{1}>\cdots>x_{n}$.
(b) If $v_{1}=(1, \ldots, 1)$, and $v_{i}=(1, \ldots, 1,-n+i-1,0, \ldots 0)$ (with $-n+i-1$ in the ($n-i+2$)nd coordinate) for $2 \leq i \leq n$, show that the resulting order is the grevlex order with $x_{1}>\cdots>x_{n}$.
(c) Describe the n-tuples of vectors v_{1}, \ldots, v_{n} such that the weight order is a monomial ordering. (Hint: see forum.)
(d) (10 bonus points) Show that any monomial ordering on $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ may be obtained as a weight order, using an appropriate choice of vectors.
5. Polynomials in initial ideals. Fix a monomial ordering $<$ on $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and a Gröbner basis $\left\{g_{1}, \ldots, g_{m}\right\}$ for an ideal I of R. Prove that a polynomial $h \in R$ is in $\mathrm{in}_{<}(I)$ if and only if it is a sum of monomial terms, each one of which is divisible by $\mathrm{in}_{<}\left(g_{i}\right)$ for some i.

