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1 Introduction

Matroid theory is a combinatorial theory of independence
which has its origins in linear algebra and graph theory,
and turns out to have deep connections with many other
fields. There are natural notions of independence in lin-
ear algebra, graph theory, matching theory, the theory
of field extensions, and the theory of routings, among
others. Matroids capture the combinatorial essence that
those notions share.

Gian-Carlo Rota, who helped lay down the founda-
tions of the field and was one of its most energetic am-
bassadors, rejected the “ineffably cacophonous” name of
matroids. He proposed to call them combinatorial geome-
tries instead.1 [10] This alternative name never really
caught on, but the geometric roots of the field have since
grown much deeper, bearing many new fruits.

The geometric approach to matroid theory has re-
cently led to the solution of long-standing questions, and
to the development of fascinating mathematics at the in-
tersection of combinatorics, algebra, and geometry. This
note is a selection of some recent successes.

2 Definitions

Matroids were defined independently in the 1930s by
Nakasawa [19] and Whitney [22]. A matroid M = (E, I)
consists of a finite set E and a collection I of subsets of
E, called the independent sets, such that

(I1) ∅ ∈ I
(I2) If J ∈ I and I ⊆ J then I ∈ I.

(I3) If I, J ∈ I and |I| < |J | then there exists j ∈ J−I
such that I ∪ j ∈ I.

We will assume that every singleton {e} is independent.

Thanks to (I2), it is enough to list the collection B of
maximal independent sets; these are called the bases of
M . By (I3), they have the same size r = r(M), which
we call the rank of M . Our running example will be the
matroid with

E = abcde, B = {abc, abd, abe, acd, ace}, (1)

omitting brackets for easier readability.

Let us now discuss the two most important motivating
examples of matroids; there are many others.
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1. Vector configurations. Let F be a field, let E be a set
of vectors in a vector space over F, and let I be the col-
lection of linearly independent subsets of E. Then (E, I)
is a linear matroid (over F).

2. Graphs. Let E be the set of edges of a graph G and I
be the collection of forests of G; that is, the subsets of E
containing no cycle. Then (E, I) is a graphical matroid.
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Figure 1: A linear and a graphical representation of the
matroid of (1) with B = {abc, abd, abe, acd, ace}.

There are several natural operations on matroids. For
S ⊆ E, the restriction M |S and the contraction M/S are
matroids on the ground sets S and E − S, respectively,
with independent sets

I|S = {I ⊆ S : I ∈ I}
I/S = {I ⊆ E − S : I ∪ IS ∈ I}

for any maximal independent subset IS of S. When M is
a linear matroid in a vector space V , M |S and M/S are
the linear matroids on S and E−S that M determines on
the vector spaces span(S) and V/span(S), respectively.

The direct sum M1 ⊕ M2 of two matroids M1 =
(E1, I1) and M2 = (E2, I2) on disjoint ground sets is
the matroid on E1 ∪ E2 with independent sets

I1 ⊕ I2 = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}.

Every matroid decomposes uniquely as a direct sum of its
connected components.

Finally, the orthogonal matroid of M , denoted M⊥, is
the matroid on E with bases

B⊥ = {E −B : B ∈ B}.

Remarkably, this simple notion simultaneously general-
izes orthogonal complements and dual graphs. If M is
the matroid for the columns of a matrix whose rowspan
is U ⊆ V , then M⊥ is the matroid for the columns of
any matrix whose rowspan is U⊥. If M is the matroid
for a planar graph G, drawn on the plane without edge
intersections, then M⊥ is the matroid for the dual graph
G⊥, whose vertices and edges correspond to the faces and
edges of G, respectively, as shown in Figure 2.
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Figure 2: The planar graph of Figure 1 and its dual
graph, whose set of bases is B⊥ = {bd, be, cd, ce, de}.

3 Enumerative invariants

Two matroids M1 = (E1, I1) and M2 = (E2, I2) are iso-
morphic if there is a relabeling bijection φ : E1 → E2

that maps I1 to I2. A matroid invariant is a function
f on matroids such that f(M1) = f(M2) whenever M1

and M2 are isomorphic. Let us introduce a few important
examples.

The f-vector and the h vector. The independent sets
of M form a simplicial complex I by (I2); its f -vector
counts the number fk(M) of independent sets of M of
size k + 1 for each k. The h-vector of M , defined by

r∑
k=0

fk−1(q − 1)r−k =

r∑
k=0

hkq
r−k,

stores this information more compactly. For example, the
matroid of (1) has

f(M) = (1, 5, 9, 5), h(M) = (1, 2, 2, 0).

The characteristic polynomial. We define the rank func-
tion r : 2E → Z of a matroid M by

r(A) = largest size of an independent subset of A,

for A ⊆ E. Let r = r(M) = r(E) be the rank of M .
When M is a linear matroid, r(A) = dim span(A). The
characteristic polynomial of M is

χM (q) =
∑
A⊆E

(−1)|A|qr(M)−r(A).

The sequence w(M) of Whitney numbers of the first kind
is defined by χM (q) = w0q

r − w1q
r−1 + · · ·+ (−1)rwrq

0.
For example, the matroid of (1) has

w(M) = (1, 4, 5, 2).

The characteristic polynomial of a matroid is one of
its most fundamental invariants. For graphical and linear
matroids, it has the following interpretations. [10, 20, 23]

1. Graphs. If M is the matroid of a connected graph G,
then q χM (q) is the chromatic polynomial of G; it counts
the colorings of the vertices of G with q given colors such
that no two neighbors have the same color.
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2. Hyperplane arrangements. Suppose M is the matroid
of non-zero vectors v1, . . . , vn ∈ Fd, and consider the ar-
rangement A of hyperplanes

Hi : vi · x = 0, 1 ≤ i ≤ n

and its complement V (A) = Fd − (H1 ∪ · · · ∪ Hn). De-
pending on the underlying field, χM (q) stores different
information about V (A):
(a) (F = Fq) V (A) consists of χM (q) points.
(b) (F = R) V (A) consists of |χM (−1)| regions.
(c) (F = C) The Poincaré polynomial of V (A)∑

k≥0

rank Hk(V (A),Z)qk = (−1)dχM (−1/q).

4 Geometric Model 1. Matroid polytopes

A crucial insight on the geometry of matroids came from
two seemingly unrelated places: combinatorial optimiza-
tion and algebraic geometry. From both points of view,
it is natural to model a matroid in terms of the following
polytope.

Definition 1. (Edmonds, 1970, [11]) Let M be a matroid
on the ground set E. The matroid polytope

PM = conv{eB : B is a basis of M},

where {ei : i ∈ E} is the standard basis of RE and we
write eB = eb1 + · · ·+ ebr for B = {b1, . . . , br}.

Figure 3 shows the matroid polytope for example (1).
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Figure 3: The matroid polytope for our sample matroid
(1). The vertices exhibit which triplets form bases.

Combinatorial Optimization. The central question of
combinatorial optimization is the following: Given a
family B of combinatorial objects and a cost function
c : B → R, find the object(s) B in B for which the cost
c(B) is minimized. To do this, one often looks for a poly-
tope PB ⊂ Rd modeling the family B and a linear function
f on Rd such that
• PB has a vertex vB for each object B ∈ B, and

• c(B) = f(vB) for each B ∈ B.
If one can do this, then the optimal object(s) B corre-
spond to the vertices of the face of the polytope PB where
the linear function f is minimized. This simple, beautiful
idea is the foundation of linear programming. There are
many techniques to optimize f , whose efficiency depends
on the complexity of the polytope PB.

Edmonds observed that, given a matroid M and a
cost function c : E → R on its ground set, the bases
B = {b1, . . . , br} of M of minimum cost c(B) := c(b1) +
· · · + c(br) can be found via linear programming on the
matroid polytope PM .

As a sample application, Edmonds [11] used these
ideas to solve the matroid intersection problem for ma-
troids M and N on the same ground set. This problem
asks to find the size of the largest set which is independent
in both M and N .

Algebraic Geometry. Instead of studying the r-
dimensional subspaces of Cn one at a time, it is often use-
ful to study them all at once. They can be conveniently
organized into the space of r-subspaces of Cn called the
Grassmannian Gr(r, n); each point of Gr(r, n) represents
an r-subspace of Cn.

A choice of a coordinate system on Cn gives rise to
the Plücker embedding of

Gr(r, n)
p
↪−→ PC(n

r)−1

as follows. For an r-subspace V ⊂ Cn, choose an r × n
matrix A with V = rowspan(A). Then for each of the

(
n
r

)
r-subsets B of [n] let

pB(V ) := det(AB)

be the determinant of the r×r submatrix AB of A whose
columns are given by the subset B. Although there are
many different choices for the matrix A, they can be ob-
tained from one another by elementary row operations,
which only change the Plücker vector p(V ) by multipli-
cation by a global constant. Therefore p(V ) is well defined
as an element of projective space. The map p provides a
realization of the Grassmannian as a smooth projective
variety.

The torus T = (C − {0})n acts on Cn by stretch-
ing the n coordinate axes, thus inducing an action of
T on Gr(r, n). This action gives rise to a moment map
µ : Gr(r, n)→ Rn given by

µ(V )i =

∑
B3i |det(AB)|2∑
B |det(AB)|2

for 1 ≤ i ≤ n.

Now consider the trajectory T · V of the r-subspace
V ∈ Gr(r, n) as the torus T acts on it, and take its closure.
Where does the resulting toric variety T · V ⊂ Gr(r, n) go
under the moment map? Precisely to the matroid poly-
tope!
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Define the matroid M(V ) of the subspace V ⊂ Cn

to be the matroid of the columns of A; its bases B
correspond to the non-zero Plücker coordinates pB(V ).
Gelfand, Goresky, MacPherson, and Serganova [14]
showed that

µ(T · V ) = PM(V ).

Thus matroid polytopes arise naturally in this algebro-
geometric setting as well.

As a sample application, the degree of T · V ⊂
PC(n

r)−1 is then given by the volume of the matroid poly-
tope PM(V ). Ardila, Benedetti, and Doker [4] used this

to find a purely combinatorial formula for deg(T · V ) in
terms of the matroid M(V ).2

A geometric characterization of matroids. In most con-
texts where polytopes arise, it is advantageous if they
happen to have a nice structure. For example, in opti-
mization, the edges of the polytope are crucial to various
algorithms for linear programming. In geometry, they
control the GKM presentation of the equivariant coho-
mology of the Grassmannian.

Matroid polytopes have the following beautiful com-
binatorial characterization, which was discovered in the
context of toric geometry.

Theorem 2. (Gelfand-Goresky-MacPherson-Serganova,
1987, [14]) A collection B of subsets of [n] is the set of
bases of a matroid if and only if every edge of the polytope

PB := conv{eB : B ∈ B} ⊂ Rn

is a translate of ei − ej for some i, j.

This makes matroid polytopes a very useful model for
matroids. In fact, one could define a matroid to be a sub-
polytope of the cube [0, 1]n that only uses these vectors
as edges. Notice that from this polytopal point of view,
even if one only cares about linear matroids, all matroids
are equally natural. Matroid theory provides the correct
level of generality.
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Figure 4: The root system A3 = {ei − ej : 1 ≤ i, j ≤ 4},
where ei − ej is denoted ij. Root systems play an essen-
tial role in matroid theory, as demonstrated by Theorem
2.

The theorem above shows that in matroid theory, a
central role is played by one of the most important vec-
tor configurations in mathematics, the root system for the
special linear group SLn:

An−1 = {ei − ej : 1 ≤ i, j ≤ n},

as shown in Figure 4 for n = 4. From this point of view, it
is natural to extend this construction to other Lie groups.
The resulting theory of Coxeter matroids [9], introduced
by Gelfand and Serganova, is ripe for further combinato-
rial exploration.

Hopf Algebra. Joni and Rota showed that many combi-
natorial families have natural merging and breaking oper-
ations that give them the structure of a Hopf algebra, with
many useful consequences. In particular, in the 1970s and
1980s, Joni–Rota [15] and Schmitt [21] defined the Hopf
algebra of matroids M as the span of the set of matroids
modulo isomorphism, with the product · : M ⊗M → M
and coproduct ∆ : M→M⊗M given by:

M ·N := M ⊕N for matroids M and N ,

∆(M) :=
∑
S⊆E

(M |S)⊗ (M/S) for a matroid M on E.

For M to be a Hopf algebra, we require an antipode map
S, which is the Hopf-theoretic analog of an inverse. Gen-
eral results of Schmitt and Takeuchi show that this map
exists.

The antipode S is a fundamental ingredient of a Hopf
algebra, so it is important to find an efficient formula
for it. For the Hopf algebra of matroids M, this was
only resolved recently, thanks to the new insight that the
matroid polytope plays an essential role. An important
preliminary observation, which readily follows from The-
orem 2, is that every face of a matroid polytope is itself
a matroid polytope.

Theorem 3. (Aguiar–Ardila, 2017, [3]) The antipode of
the Hopf algebra of matroids M is given by

S(M) =
∑

PN face of PM

(−1)c(N)N

for any matroid M , where c(N) denotes the number of
connected components of N .

This formula is the best possible: it involves no cancel-
lation. It has the unexpected consequence that matroid
polytopes are also algebraic in nature. In the Hopf alge-
braic structure of matroids, matroid polytopes are funda-
mental.

2This was the subject of Carolina Benedetti and Jeff Doker’s final project for the first course offered by the SFSU-Colombia Combi-
natorics Initiative in 2007, as described in [7].
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5 Geometric Model 2. Bergman fans.

We now introduce a second geometric model of matroids,
coming from tropical geometry. The flats of M are an
important ingredient; these are the subsets F ⊆ E such
that r(F ∪ e) > r(F ) for all e /∈ F. We say F is proper
if it does not have rank 0 or r. The lattice of flats of
M , denoted LM , is the set of flats, partially ordered by
inclusion, as shown in Figure 5.
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Figure 5: The lattice of flats of our sample matroid (1).

When M is the matroid of a vector configuration E
in a vector space V , the flats of M are the (subsets of E
contained in the) subspaces spanned by E.

Tropical geometry. Tropicalization is a powerful tech-
nique that turns an algebraic variety V into a simpler,
piecewise linear space TropV that still contains geometric
information about V . Tropical geometry answers ques-
tions in algebraic geometry by translating them into poly-
hedral questions that can be approached combinatorially.
For an introduction, see [17].

An important early success of the theory was
Mikhalkin’s 2005 tropical computation [18] of the
Gromov-Witten invariants of CP2, which count the plane
curves of degree d and genus g passing through 3d+ 1−g
general points. Since then, many new results in classical
algebraic geometry have been obtained through tropical
techniques.

Tropical varieties are simpler than algebraic varieties,
but they are still very intricate. An important example to
understand is that of linear spaces. What is the tropical-
ization of a linear subspace V of Cn? Sturmfels realized
that the answer depends only on the matroid of V . It can
be described as follows.

Definition/Theorem 4. (Ardila-Klivans, 2006, [6])
1. The Bergman fan ΣM of a matroid M on E is the
polyhedral complex in RE/ 〈eE〉 consisting of the cones

σF = cone{eF : F ∈ F}

for each flag F = {F1 ( · · · ( Fl} of proper flats of M .
Here eF := ef1 + · · ·+ efk for F = {f1, . . . , fk}.

2. The tropicalization of a linear subspace V of Cn is the
Bergman fan of its matroid:

TropV = ΣM(V ).

3. The Bergman fan ΣM is a cone over a wedge of wr

spheres of dimension r− 2, where wr is the last Whitney
number of the first kind.

de
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bcde
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Figure 6: The Bergman fan of our sample matroid (1) is
modeled after the lattice of flats of Figure 5. It has 8 rays
and 9 facets. It is a cone over a wedge of w3 = 2 circles.

A geometric characterization of Bergman fans. Tropi-
cal varieties have a natural notion of degree, analogous to
the notion of the degree of an algebraic variety. We have
the following remarkable characterization.

Theorem 5. (Fink, 2013, [13]) A tropical variety has
degree 1 if and only if it is the Bergman fan of a matroid.

We conclude that Bergman fans are also excellent
models for matroids. In fact, one could define a matroid
to be a tropical variety of degree 1; this is the tropical
analog of a linear space. Notice that, although ΣM only
arises via tropicalization when M is a linear matroid, one
should really consider the Bergman fans of all matroids;
they are equally natural from the tropical point of view.
Again, matroid theory really provides the correct level of
generality.

The theorems above explain the important role that
matroids play in tropical geometry. On the one hand,
they provide a useful testing ground, providing hints for
the kinds of general results that may be possible, and the
sorts of difficulties that one should expect. On the other
hand, they are fundamental building blocks; for instance,
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in analogy with the classical definition of a manifold, a
tropical manifold is a tropical variety that locally looks
like a (Bergman fan of a) matroid; an example is shown
in Figure 7.

Figure 7: A tropical manifold is a tropical variety that
locally looks like a (Bergman fan of a) matroid. (Picture:
Johannes Rau)

The Chow ring and Hodge theory. The Chow ring of
the Bergman fan ΣM is defined to be

A∗(ΣM ) := R[xF : F proper flat of M ]/(IM + JM ),

where

IM = 〈xF1xF2 : F1 ( F2 and F1 ) F2〉 ,

JM =

〈∑
F3i

xF −
∑
F3j

xF : i, j ∈ E

〉
.

This ring has a natural geometric interpretation when
M is linear over C: Feichtner and Yuzvinsky [12] proved
that A∗(ΣM ) is the Chow ring of De Concini and Pro-
cesi’s wonderful compactification of the complement of a
hyperplane arrangement.

Surprisingly, A∗(ΣM ) behaves as nicely as the coho-
mology ring of a smooth projective variety. This is one
of the most celebrated recent results in matroid theory,
since it provided the tools to prove several long-standing
conjectures, as we now briefly explain.

Theorem 6. (Adiprasito-Huh-Katz, 2015, [2]) The Chow
ring A∗(ΣM ) of the Bergman fan of a matroid M satis-
fies Poincaré duality, the hard Lefschetz theorem, and the
Hodge-Riemann relations.

The inspiration for this theorem is geometric, coming
from the Grothendieck standard conjectures on algebraic
cycles. The statement and proof are combinatorial. For
further details and a precise statement, see [1, 2, 8].

Let us focus on a comparatively small but very pow-
erful consequence. The Chow ring A∗(ΣM ) is graded of
degree r−1, and there is an isomorphism deg : Ar−1 → R
characterized by the property that deg(F1 · · ·Fr−1) = 1
for any full flag F1 ( · · · ( Fr−1 of proper flats. Say a
function c : 2E → R is submodular if c∅ = cE = 0 and
cA + cB ≥ cA∪B + cA∩B for any A,B ⊆ E, and let

K(M) =
{ ∑

F flat

cFxF : c submodular
}
⊂ A1(ΣM ).

The Hodge-Riemann relations imply that for any
L1, . . . , Lr−3, a, b ∈ K(M), if we write L = L1 · · ·Lr−3,
we have

deg(La2)deg(Lb2) ≤ deg(Lab)2. (2)

Unimodality and log-concavity. We say a sequence
a0, a1, . . . , ar of non-negative integers is unimodal if there
is an index 0 ≤ m ≤ r such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ ar

and, more strongly, it is log-concave if for all 1 ≤ i ≤ r−1

ai−1ai+1 ≤ a2
i .

It is flawless if we have

ai ≤ as−i

for all 1 ≤ i ≤ s
2 , where s is the largest index with as 6= 0.

Many sequences in mathematics have these proper-
ties, but proving it is often very difficult. Aside from
their intrinsic interest, these kinds of questions have been
a source of fresh mathematics, because their solutions
have often required a fundamentally new construction or
connection, and have given rise to unforeseen structural
results about the objects of interest.

For matroids, this Hodge theory provides such a con-
nection. Consider the elements of the Chow ring A∗(ΣM )

α = αi =
∑
F3i

xF , β = βi =
∑
F 63i

xF ,

which are independent of i and lie in the cone K(M). A
clever combinatorial computation in A∗(ΣM ) shows that

deg(αkβr−1−k) = | coeff. of qk in χM (q)/(q − 1)|.

Then (2) implies that, as k varies, this sequence of de-
grees is log-concave. In turn, by elementary arguments,
this implies the following theorems, which were conjec-
tured by Rota, Heron, Mason, and Welsh in the 1970s
and 1980s.

Theorem 7. (Adiprasito-Huh-Katz, 2015, [2]) For any
matroid M of rank r, the following sequences, defined in
Section 3, are unimodal and log-concave:
• the Whitney numbers of the first kind w(M), and
• the f -vector f(M).
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6 Geometric Model 3. Conormal fans.

We now introduce another polyhedral model of M that
leads to stronger inequalities for matroid invariants. We
say that a flag F = {F1 ⊆ · · · ⊆ Fl} of nonempty flats of
M and a flag G = {G1 ⊇ · · · ⊇ Gl} of nonempty flats of
M⊥ of the same length are compatible if

l⋂
i=1

(Fi ∪Gi) = E,

l⋃
i=1

(Fi ∩Gi) 6= E.

All maximal compatible pairs have length n− 2.

Definition 8. (Ardila-Denham-Huh, 2017, [5]) The
conormal fan ΣM,M⊥ of a matroid M is the polyhedral
complex in RE/ 〈eE〉 × RE/ 〈eE〉 consisting of the cones

σF,G = cone{eFi
+ fGi

: 1 ≤ i ≤ l}

for each compatible pair of flags (F ,G). Here {ei : i ∈ E}
and {fi : i ∈ E} are the standard bases for two copies of
RE.

It would be interesting to find an intrinsic characteri-
zation of conormal fans of matroids, in analogy with The-
orems 2 and 5.

The Chow ring and Hodge theory. Consider the poly-
nomial ring with variables xF,G where F and G are non-
empty flats of M and M⊥ respectively, not both E,
such that F ∪ G = E. When it is defined, we write
xF,G = xF1,G1 · · ·xFl,Gl

for flags F = {F1 ( · · · ( Fl}
and G = {G1 ) · · · ) Gl}. We also need the special
elements

ai =
∑
F3i
F 6=E

xF,G, a′i =
∑
G3i
G6=E

xF,G, di =
∑

F∩G3i
xF,G.

We define the Chow ring of the conormal fan of M to be

A∗(ΣM,M⊥) := R[xF,G]/(IM,M⊥ + JM,M⊥)

where

IM,M⊥ = 〈xF,G : F and G are not compatible〉 ,
JM,M⊥ =

〈
ai − aj , a′i − a′j : i, j ∈ E

〉
.

The Chow ring of the conormal fan behaves as nicely
as the Chow ring of the Bergman fan, though proving it
requires significant additional work.

Theorem 9. (Ardila-Denham-Huh, 2017, [5]) The Chow
ring A∗(ΣM,M⊥) of the conormal fan of a matroid satis-
fies Poincaré duality, the hard Lefschetz theorem, and the
Hodge-Riemann relations.

This Chow ring A∗(ΣM,M⊥) has degree n − 2, and
there is an isomorphism deg : An−2 → R characterized
by the property that deg(xF,G) = 1 for any maximal pair
of compatible flags F and G. The inequality (2) is still
satisfied for elements of a suitable cone K(M,M⊥).

Unimodality, log-concavity, and flawlessness. We now
apply (2) to the elements a = ai and d = di of the Chow
ring A∗(ΣM,M⊥), which are independent of i and lie in

the relevant cone K(M,M⊥). A subtle combinatorial ar-
gument shows that

deg(akdn−2−k) = | coeff. of qk+1 in χM (q + 1) |.

As k varies, this sequence of coefficients is the h-vector of
the broken circuit complex BC<(M). This is the collec-
tion of subsets of E−minE that do not contain a broken
circuit ; that is, a set of the form C−minC for a minimal
dependent set C. The broken circuit complex depends
on a choice of a linear order < on E, but its h-vector is
independent of <.

The inequalities (2) for the Chow ring AM,M⊥ then
imply the following theorems, which were conjectured by
Brylawski and Dawson in the 1980s.

Theorem 10. (Ardila-Denham-Huh, 2017) For any ma-
troid M of rank r, the following sequences, defined in Sec-
tion 3, are unimodal and log-concave:
• the h-vector of the broken circuit complex, and
• the h-vector h(M).

Theorem 10 is significantly stronger than Theorem 7.
By work of Juhnke-Kubitzke and Le [16], it also implies
a 2003 conjecture of Swartz: these h-vectors are flawless.
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gebra und Geometrie/Contributions to Algebra and Geometry
54 (2013), no. 1, 13–40. 5

14. I. M. Gel′fand, R. M. Goresky, R. D. MacPherson, and V. V.
Serganova, Combinatorial geometries, convex polyhedra, and
Schubert cells, Adv. in Math. 63 (1987), no. 3, 301–316. MR
877789 (88f:14045) 4

15. S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in com-
binatorics, Umbral Calculus and Hopf Algebras (Norman, OK,
1978), Contemp. Math., vol. 6, Amer. Math. Soc., Providence,
R.I., 1982, pp. 1–47. 4

16. M. Juhnke-Kubitzke and D. V. Le, Flawlessness of h-vectors of
broken circuit complexes, International Mathematics Research
Notices (2016), rnw284. 7

17. D. Maclagan and B. Sturmfels, Introduction to Tropical Ge-
ometry, Graduate Studies in Mathematics, vol. 161, American
Mathematical Society, Providence, RI, 2015. 5

18. G. Mikhalkin, Enumerative tropical algebraic geometry in ?2,
Journal of the American Mathematical Society 18 (2005), no. 2,
313–377. 5

19. T. Nakasawa, Zur axiomatik der linearen abhängigkeit. i, Sci-
ence Reports of the Tokyo Bunrika Daigaku, Section A 2
(1935), no. 43, 235–255. 1

20. P. Orlik and L. Solomon, Combinatorics and topology of com-
plements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–
189. MR 558866 (81e:32015) 2

21. W. R. Schmitt, Antipodes and incidence coalgebras, Journal of
Combinatorial Theory, Series A 46 (1987), no. 2, 264–290. 4

22. H. Whitney, On the Abstract Properties of Linear Dependence,
Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091 1

23. T. Zaslavsky, Facing up to arrangements: face-count formulas
for partitions of space by hyperplanes, Mem. Amer. Math. Soc.
1 (1975), no. issue 1, 154, vii+102. MR 0357135 (50 #9603) 2

8


	Introduction
	Definitions
	Enumerative invariants
	Geometric Model 1. Matroid polytopes
	Geometric Model 2. Bergman fans.
	Geometric Model 3. Conormal fans.
	Acknowledgments.
	About the author.

