A generalization of Euler’s R > 2r

Federico Ardila

Let AABC be a triangle with inradius r and circumradius R. A classical
result due to Euler [1, p. 31], [2, p. 78] states that R > 2r. The purpose
of this note is to extend this inequality, replacing the circumcircle of the
triangle with an arbitrary ellipse that passes through its vertices. The main
result of this note is the following.

Theorem 1 Let AABC' be a triangle with inradius r, inscribed in an ellipse
with constant k. (The ellipse is the locus of the points P such that the sum
of the distances from P to two fized points is k.) Then k > 4r.

Notice that the circumcircle of AABC is an ellipse whose foci both coin-
cide with the circumcenter of the triangle, and whose constant is 2R. Thus
Euler’s inequality is a special case of Theorem 1.

We start with the following lemma.

Lemma 2 If a given circle of radius P contains a given triangle of inradius
r, then P > 2r.

Proof of Lemma 2.

Let S be the given circle of radius P and let O be its center. Let ABC be
the given triangle with inradius r. It is clear that 3P > AO+ BO+CO. Now
we prove that AO + BO + C'O > 6r, which will finish the proof. Let D, E
and F' be the reflections of O across the sides BC', C'A and AB respectively.

First assume that O is inside triangle ABC. Then the hexagon AFBDCFE
has perimeter 2(AO + BO + CO) and area 2(ABC). From the isoperimetric
theorem ([2, p. 63]) we know that, of all hexagons with a fixed perimeter p,
the one with the largest area is the regular hexagon, which has area p?v/3/24.
Therefore, 2(ABC) < (AO + BO + C0)%/3/6.
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We also know that, of all triangles with fixed perimeter ¢, the one with the
largest area is the equilateral triangle, which has area ¢?\/3/36. Therefore
if s is the semiperimeter of triangle ABC, we have sr = (ABC) < s2v/3/9.
Thus s > 3v/37 and (ABC) = sr > 3v/372.

Combining the two inequalities above, we get AO+BO+CO > 6r, which
is the desired result.

The case where O is outside triangle ABC' can be treated similarly. If O
is inside angle BAC but outside triangle ABC', the hexagon AF BOCEFE has
perimeter 2(AO 4+ BO + CO) and area greater than 2(ABC'). We can then
continue as above. Similarly, if O is inside the angle vertex opposite to angle
BAC (so that A is inside triangle OBC) then the quadrilateral OBDC has
perimeter less than 2(AO + BO + CO) and area greater than 2(ABC'). We
can regard this quadrilateral as a degenerate hexagon, and again continue as
above. [

Proof of Theorem 1.

Let F} and F5 be the foci of the ellipse. Let I'4 be the circle with center
A that passes through F), and define analogously I'g and I'c. Extend F} A
to meet I'4 again at A;, and define analogously B; and C4. Let I be the
circle with center F; and radius k. From the triangle inequality, we have that
F2A1 S F2A+AA1 = F2A+AF1 = k, SO Al is inside I'. Slmllarly Bl and Cl
are inside I'. (In fact, ' is internally tangent to I'4, I'p and I'c and contains
them completely.) Also, notice that triangle A;B;Cy is the homothety of
triangle ABC' with center F) and ratio 2, so its inradius is 2r. Applying the
lemma to triangle A; B;C; and circle [', we obtain that & > 4r. [J
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