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Abstract

We prove that the tropical surface of the root system An−1 has degree 1
2n(n− 1)(n− 2).

1 Introduction

Tropical geometry was developed to answer questions in classical algebraic geometry combinatori-
ally. Tropicalization converts a projective variety V into a polyhedral complex trop(V ) that, roughly
speaking, records the behavior of V at infinity. The tropical variety trop(V ) retains a surprising
amount of information about V , such as its dimension and degree. Many important invariants of
trop(V ) can be computed using combinatorics and discrete geometry, thus giving computations of
algebro-geometric invariants of V . For detailed introductions to tropical geometry, see [6, 9, 10].

Initially, tropical geometry was most interested in studying tropicalizations of algebraic varieties
of importance. However, a more robust theory arises when one considers abstract tropical varieties,
most of which do not arise via tropicalization. This is analogous to the situation in matroid theory,
where a linear subspace V of a vector space gives rise to a matroid MV , but a more robust theory
arises when one considers all matroids, most of which do not arise from a linear subspace. (This is
not just an analogy: matroids may be understood as the tropical fans of degree 1 [3, 8].)

Tropical geometry is then a rich source of well motivated combinatorial problems of significance
within and beyond combinatorics. A good theory needs good examples, and combinatorics is a
rich source of tropical varieties. In this spirit, Ardila, Kato, McMillon, Perez, and Schindler [2]
constructed tropical surfaces associated in a natural way to the classical root systems. They proved
that the tropical Laplacians of these surfaces have exactly one negative eigenvalue, as one might
predict from the Hodge index theorem.

The geometric protagonist of this paper is the tropical surface S(An−1) associated to the root
system An−1 of the special linear Lie algebra sln. Our main result is that this surface has degree
1
2n(n− 1)(n− 2).

2 Background.

Let n be a positive integer and write [n] = {1, 2, . . . , n}. Let e1, . . . , en be the standard basis of Rn,

and write eS =
∑
s∈S

es for each subset S ⊆ [n].
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2.1 Root Systems

Let us begin by defining root systems and root polytopes.

Definition 1. [5] A crystallographic root system Φ is a set of vectors in Rn satisfying:

• For every root β ∈ Φ , the set Φ is closed under reflection across the hyperplane perpendicular
to β.

• For any two roots α, β ∈ Φ, the quantity 2 〈α,β〉〈α,α〉 is an integer, where 〈−,−〉 is the standard
inner product in Rn.

• If β, cβ ∈ Φ for c ∈ R, then c = 1 or c = −1.

Definition 2. [5] An irreducible root system is one that cannot be partitioned into the union
of two proper subsets ∆ = ∆1 ∪∆2, such that 〈α, β〉 = 0 for all α ∈ ∆1 and β ∈ ∆2.

Root systems play a fundamental role in many areas of mathematics; for example, they are key
to the classification of semisimple Lie algebras [5]. The irreducible root systems have been classified
into four infinite classical families and five exceptional root systems. In this paper we focus on
the most classical family:

An−1 = {ei − ej : i, j ∈ [n], i 6= j}.
This is the root system of the special linear Lie algebra sln.

Definition 3. The root polytope P (Φ) of a root system Φ is the convex hull of Φ.

2.2 Tropical Geometry

To define the root surfaces S(An−1) that interest us, we first introduce some basic definitions from
tropical geometry.

A cone is a set of the form

cone(v1, . . . , vn) = {λ1v1 + · · ·+ λnvn : λ1, λ2, ..., λn ≥ 0}

for vectors v1, . . . , vn in Rd. The cone is rational if it is generated by integer vectors. A (rational)
polyhedral fan is a nonempty finite collection Σ of (rational) cones in Rd such that every face of
a cone in Σ is also in Σ, and the intersection of any two cones in Σ is a face of both of them. A fan
is pure of dimension d if all maximal faces are d-dimensional. We let Σi denote the set of cones of
Σ of dimension i. Tropical fans are those that meet the following balancing condition.

Definition 4. [9] Let Σ ⊆ Rn be a rational polyhedral fan, pure of dimension d, with a choice of
weight w(σ) ∈ N for each maximal cone σ ∈ Σd.

For each (d − 1)-cone τ ∈ Σd−1, consider the (d − 1)-subspace Lτ ⊆ Rn spanned by τ , the
induced (d − 1)-lattice Lτ,Z = Lτ ∩ Zn, and the quotient (n − d + 1)-lattice Nτ = Zn/Lτ,Z. Each
d-cone σ ∈ Σd with σ ⊃ τ determines a ray (σ+Lτ )/Lτ in Rn/Lτ . This ray is rational with respect
to the lattice Nτ ; let uσ/τ be the first lattice point on this ray. The fan Σ is balanced at τ if the
following relation holds in Rn/Lτ : ∑

σ∈Σd :σ⊃τ

w(σ)uσ/τ = 0

The fan Σ is a tropical fan if it is balanced at all faces of dimension d− 1.
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Tropical varieties are more general than tropical fans; see [10] for a definition. Tropical sur-
faces are tropical varieties that are pure of dimension 2. In particular, 2-dimensional tropical fans
are tropical surfaces.

Definition 5. The tropical root surface S(Φ) of a root system Φ is the cone over the 1-skeleton
of P (Φ) with unit weights on all facets. It consists of:

• Rays: cone(r) for each r ∈ Φ.

• Facets: cone(r, s) for each r, s ∈ Φ such that rs is an edge of the root polytope P (Φ).

• Weights: w(σ) = 1 for every facet σ.

Figure 1: The root polytope P (A3) and the tropical root surface S(A3).

Tropical root surfaces were introduced by [2, 11, 12] by Federico Ardila, Chiemi Kato, Jewell
McMillon, Maria Isabel Perez, and Anna Schindler. Figure 1 shows the root polytope and the
tropical surface of the root system A3, with its cones truncated for visibility.

In classical algebraic geometry, the degree of an irreducible affine or projective variety of dimen-
sion d is obtained by counting its intersection points with a generic linear space of codimension d.
In tropical geometry, degree is defined similarly. The analog of a generic linear space is a generic
shift of the standard tropical linear space of codimension d, which we now define.

Definition 6. [3, 9] The standard tropical linear space Σn,n−d is the tropical fan whose facets
are the cones

σi1,i2,...,in−d−1
= {x ∈ Rn : xi1 ≥ xi2 ≥ · · · ≥ xin−d−1

≥ xin−d
= · · · = xin−1 = xin}

= cone{e{i1}, e{i1,i2}, . . . , e{i1,...,in−d−1}, e[n]}

for each choice of distinct i1, i2, . . . , in−d−1 ∈ [n], where every facet has weight 1.

The fan Σn,n−d described above is the fine subdivision of the Bergman fan of the uniform
matroid Un,n−d, as shown in [3]. Its support (i.e., the union of all of its cones) is the set of vectors
in Rn whose smallest d+ 1 entries are equal to each other.

Definition 7. Consider two tropical fans Σ1 and Σ2 in Rn of complementary dimensions d1 and
d2; that is, d1 + d2 = n.
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We say Σ1 and Σ2 intersect transversally if Σ1∩Σ2 is a finite union of points, and each such
point p can be written uniquely as p = σ1 ∩σ2 for facets σ1, σ2 of Σ1,Σ2, respectively. The weight
of each intersection point p is

w(p) := w(σ1)w(σ2) [Zn : Lσ1,Z + Lσ2,Z]

We call index(p) := [Zn : Lσ1,Z + Lσ2,Z] the index of p. The degree of the transversal inter-
section at p is

Σ1 · Σ2 :=
∑

p∈Σ1∩Σ2

w(p).

If Σ1 and Σ2 are balanced but do not necessarily intersect transversally, then Σ1 and Σ2 + v
do intersect transversally for generic vectors v ∈ Rn, and the balancing condition implies that the
degree of their transversal intersection does not depend on v [10, Proposition 4.3.3, 4.3.6]. Thus
we define the degree of the intersection to be

Σ1 · Σ2 := (v + Σ1) · Σ2

for generic v.
Finally, the degree of a tropical fan Σ in Rn of dimension d is the degree of its intersection

with the standard tropical linear space of codimension d:

deg Σ := Σ · Σn,n−d.

In practice, to find the degree of a tropical fan Σ, one chooses a convenient generic vector v ∈ Rn
and performs the following steps.

A) Find the intersections of v + Σ with Σn,n−d.

B) For each intersection point p identify the cones v + σ1 of v + Σ and σ2 of Σn,n−d containing
it, and find the weight of that intersection.

C ) Find the degree of Σ by adding the weights of the intersection points above.

Step B) is easier when σ1 and σ2 are simplicial and saturated, with σ1 = R≥0〈α1, . . . , αd1〉,
σ2 = R≥0〈β1, . . . , βd2〉 and σ1 ∩ Zn = Z≥0〈α1, . . . , αd1〉, σ2 ∩ Zn = Z≥〈β1, . . . , βd2〉. In this case the
index of the intersection p can be computed as follows:

index(p) = | det(α1, . . . , αd1 , β1, . . . , βd2)|.

3 The Tropical Root Surface of Type A and its Degree

The following result first appeared in [12], in a slightly different form. We include a proof for
completeness.

Proposition 8. The tropical root surface S(An−1) is a tropical surface.
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Proof. We verify the balancing condition for an arbitrary ray r = cone(ei−ek). The maximal cones
of S(An−1) containing r are the cones over the edges of the root polytope P (An−1) containing ei−ek;
these are known [1, 7] to be:

Ai,jk = cone(ei − ej , ei − ek), Aij,k = cone(ei − ek, ej − ek), for j 6= i, k. (1)

One readily verifies that the primitive vectors in these cones with respect to r are ei − ej and ej − ek
in Zn/Z(ei − ek), respectively. Then the balancing condition for r says∑

σ∈Σ2 :σ⊃r

w(σ)uσ/r =
∑
k 6=i,j

(ei − ej) +
∑
k 6=i,j

(ej − ek) = (n− 2)(ei − ek) = 0,

as desired. It follows that S(An−1) is indeed a tropical surface.

We can now state and prove our main result.

Theorem 9. The degree of the tropical root surface S(An−1) is 1
2n(n− 1)(n− 2).

Proof. We follow the approach outlined at the end of Section 2.2, studying the intersection of
v + S(An−1) with Σn,n−2, where v is the super-increasing translation vector

v = (0, 1, 10, 100, 1000, . . .).

It can be verified that this vector is generic by adding a small vector ε to it, and verifying that
the intersection of v+S(An−1) with Σn,n−2, described below, has the same combinatorial structure
as the intersection of (v + ε) + S(An−1) with Σn,n−2.

A) First we find the intersection points of v + S(An−1) and Σn,n−2.

For each cone σ ∈ S(An−1) we need to find the points v + s for s ∈ σ whose three smallest
entries are equal, so they are also in Σn,n−2. The maximal cones of S(An−1) are of the form Ai,jk
and Aij,k for i 6= j 6= k, as defined in (1). We consider these two types of cones separately.

A1) Let us find the intersection points of v +Ai,jk and Σn,n−2 for i 6= j 6= k.

Let s = a(ei − ej) + b(ei − ek) = (a + b)ei − aej − bek ∈ Ai,jk for a, b ≥ 0. To make the three
smallest entries of v+ s equal, we need to choose one entry i of v = (0, 1, 10, 100, . . .) to add (a+ b)
to, and two entries j and k to subtract a and b from, respectively. Let m = min1≤i≤n(v + s)i be
the smallest coordinate of v + s, which appears at least three times; consider the following cases:

Case 1.1: m < 0:
To achieve this minimum we would have to subtract from at least 3 entries of v. Since we can

only subtract from 2 entries, this case does not contribute any intersection points.

Case 1.2: m = 0:
To achieve m = 0, we must leave entry v1 = 0 unchanged, subtract from any two other entries

j, k > 1 (necessarily subtracting a = vj = 10j−2 and b = vk = 10k−2), and add (necessarily a + b)
to any of the remaining entries i 6= 1, j, k. Thus, there are

(
n−1

2

)
(n− 3) possible intersection points

in this case.

Case 1.3: 0 < m < 1:
To achieve such a value of m, we would have to add a+b = m to v1 and subtract a = 10j−2−m

and b = 10k−2−m to two other entries j, k > 1. This would imply that 10j−2 + 10k−2 = 3m, which
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is impossible because the left hand side is at least 11 and the right hand side is less than 3. Thus
this case does not contribute any intersection points.

Case 1.4: m = 1:
In this case we must add at least 1 to entry v1 = 0, leave entry v2 = 1 unchanged, and subtract

from two other entries j, k > 2. At least one of those two entries, say j, must lead to a minimum
coordinate (v + s)j = 1, so a = 10j−2 − 1. This means that (v + s)1 = a+ b > 1 is not a minimum
coordinate, so (v+ s)k = 1 must be the other minimum coordinate, and b = 10k−2− 1. Thus, there
are

(
n−2

2

)
possible intersection points in this case.

Case 1.5: m > 1:
In this case we would have to add to the entries v1 = 0 and v2 = 1 to make them greater than

or equal to m. Since we can only add to one entry, this case does not contribute any intersection
points.

A2) Now let us find the intersection points of v +Aij,k and Σn,n−2 for i 6= j 6= k.

Let s = a(ei−ek)+b(ej−ek) = aei+bej−(a+b)ek ∈ Aij,k for a, b ≥ 0. To make the three smallest
entries of v+s equal to each other, we need to choose two entries i and j of v = (0, 1, 10, 100, . . .) to
add a and b to, respectively, and one entry k to subtract (a+ b) from. Let m = min1≤i≤n(v+s)i be
the smallest coordinate of v + s, which appears at least three times. Consider the following cases:

Case 2.1: m < 1
To achieve this value of m we would need to subtract from two of the original entries of v, which

is impossible. Thus, this case does not contribute any intersection points.

Case 2.2: m = 1
A value of m = 1 can only be achieved in entries 1, 2, k of v + s for some k > 2. We must add

a = 1 to v1, leave v2 unchanged, subtract a+ b = 10k−2 − 1 from vk, and hence add b = 10k−2 − 2
to some other entry j 6= 1, 2, k. Thus, this case contributes (n− 2)(n− 3) intersection points.

Case 2.3: 1 < m < 10
Again, such a value of m can only be achieved in entries 1, 2, k of v+s for some k > 2. Now, for

these three new entries to equal m, we must add a = m to v1, add b = m − 1 to v2, and subtract
a+ b = 10k−2 −m from vk. This forces m+ (m− 1) = 10k−2 −m, which gives m = 1

3(10k−2 + 1).
Since 1 < m < 10, we must have k = 3. Thus, this case contributes a single intersection point.

Case 2.4: m = 10
In order to make the three smallest entries of v + s equal to 10, we have the following three

options. 1. Add a = 10 to v1, add b = 9 to v2, leave v3 untouched, and subtract 19 from any of
the remaining entries k > 3. 2. Add a = 10 to v1, subtract a+ b = 10k−1 − 10 from vk with k > 3,
and add b = 10k−1− 20 to v2. 3. Add a = 9 to v2, subtract a+ b = 10k−1− 10 from vk with k > 3,
and add b = 10k−1 − 19 to v1. In each of these options k can be any number between 4 and n, so
this case contributes 3(n− 3) intersection points.

Case 2.5: m > 10
To achieve this value of m, we would need to add to the three smallest entries of v, which is

impossible. Thus, this case does not contribute any intersection points.

B) We now find the multiplicity of each of the intersection points p that we found in A). To
do that we first need to identify the cones of v + S(An−1) and Σn,n−2 that p = v + s belongs to.
Every cone in these fans is simplicial and saturated, so we can then compute the multiplicity as the
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absolute value of the determinant of the matrix whose columns are the lattice generators of these
cones.

In the particular situation that interests us, there is a convenient general shortcut. Suppose
that p is the intersection point of cone v+Ai,jk (or v+Aij,k) of v+ S(An−1) and cone σi1,i2,...,in−3

of Σn,n−2 where [n]− {i1, . . . , in−3} = {in−2, in−1, in}. Then the index of that intersection is

index(p) = |det(e{i1}, e{i1,i2}, e{i1,i2,i3}, . . . , e{i1,...,in−3}, eS , ei − ej , ei − ek)|
= |det(ei1 , ei2 , ei3 . . . , ein−3 , e{in−2,in−1,in}, ei − ej , ei − ek)|.

We reach this equality by performing elementary column operations that do not affect the determi-
nant: we sequentially subtract the (j−1)th column from the jth column for j = n−2, n−3, . . . , 2,
thus replacing eS with eS−e{i1,...,in−3} = e{in−2,in−1,in} and e{i1,...,ij} with e{i1,...,ij}−e{i1,...,ij−1} = eij
for n− 3 ≥ j ≥ 2. Notice that the resulting determinant only depends on the locations i, j, k where
we changed the entries of v, and the locations in−2, in−1, in of the three smallest entries of v + s.
The analogous result holds for the cones of the form v +Aij,k.

B1)

Case 1.2: In this case, we added to entry i and subtracted from entries j, k of v, and the three
smallest (and equal) entries of p = v+s are in positions 1, j, k. The cones that intersect are v+Ai,jk
and σi1,...,in−3for a permutation i1, . . . , in−3 of [n] − {1, j, k} that depends on the order of i, j, k.
Regardless of that permutation, the previous discussion tells us that

index(p) = | det(ê1, e2, e3, . . . , ei, . . . , êj , . . . , êk, . . . , en, e1 + ej + ek, ei − ej , ei − ek)|
= | det(ê1, e2, e3, . . . , ei, . . . , êj , . . . , êk, . . . , en, e1 + ej + ek, ej , ek)|
= | det(ê1, e2, e3, . . . , ei, . . . , êj , . . . , êk, . . . , en, e1, ej , ek)|
= 1,

where in the first step we subtract column ei from columns ei − ej and ei − ek and change their
signs, and in the second step we subtract ej and ek from e1 + ej + ek. Thus all intersections in this
case have multiplicity 1.

Case 1.4: In this case, we added to entry 1 and subtracted from entries j, k of v, and the
smallest entries of p = v + s are in positions 2, j, k. Similarly to Case 1.2, we obtain

index(p) = | det(e1, ê2, e3, . . . , êj , . . . , êk, . . . , en, e2 + ej + ek, e1 − ej , e1 − ek)|
= | det(e1, ê2, e3, . . . , êj , . . . , êk, . . . , en, e2 + ej + ek, ej , ek)|
= |det(e1, ê2, e3, . . . , êj , . . . , êk, . . . , en, e2, ej , ek)|
= 1.

It follows that each intersection in Case 1.4 has multiplicity 1.

B2)

Case 2.2 : In this case we added to entries i = 1, j and subtracted from entry k of v, and we
ended up with the three smallest entries of p in positions 1, 2, k. Therefore

index(p) = |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1 − ek, ej − ek)|
= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1 − ek, ek)|
= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1, ek)|
= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e2, e1, ek)|
= 1,
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where we first subtract ej from ej − ek and change the sign to ek, then we add ek to e1 − ek, and
then we subtract e1 and ek from e1 + e2 + ek. Again, it follows that each one of these intersections
has multiplicity 1.

Case 2.3 : Here we added to entries i = 1, 2 and subtracted from entry 3 of v, and we ended up
with the three smallest entries of p in positions 1, 2, 3. Therefore

index(p) = | det(ê1, ê2, ê3, e4, . . . , en, e1 + e2 + e3, e1 − e3, e2 − e3)|
= | det(ê1, ê2, ê3, e4, . . . , en, 3e3, e1 − e3, e2 − e3)|
= | det(ê1, ê2, ê3, e4, . . . , en, 3e3, e1, e2)|
= 3,

where we first subtract e1 − e3 and e2 − e3 from e1 + e2 + e3, and then we add one third of 3e3 to
e1 − e3 and e2 − e3. Thus this intersection has multiplicity 3.

Case 2.4 : Here we had three options: In option 1 we added to entries i = 1, 2 and subtracted
from entry k of v, and we ended up with the three smallest entries of p in positions 1, 2, 3. Therefore

index(p) = |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e1 + e2 + e3, e1 − ek, e2 − ek)|
= |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e1 + e2 + e3, e1, e2)|
= |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e3, e1, e2)|
= 1,

where we first add ek to e1 − ek and e2 − ek, and then subtract e1 and e2 from e1 + e2 + e3. These
intersections then have multiplicity 1.

In option 2 we added to entries i = 1, 2 and subtracted from entry k of v, and we ended up
with the three smallest entries of p in positions 1, 3, k. Therefore

index(p) = | det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1 − ek, e2 − ek)|
= | det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1 − ek, ek)|
= | det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1, ek)|
= | det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e3, e1, ek)|
= 1,

where we first subtract e2 from e2 − ek and change the sign of the result, then add ek to e1 − ek,
and finally subtract e1 and ek from e1 + e3 + ek. These intersections then have multiplicity 1.

Option 3 is analogous to option 2, reversing the roles of 1 and 2, so these intersections have
multiplicity 1 as well.

C) Finally, we collect in Table 1 all the intersections points and their multiplicities, as computed
in A) and B). Putting them together, we conclude that the degree of the tropical root surface of
type An−1 is

degS(An−1) =

(
n− 1

2

)
(n− 3) +

(
n− 2

2

)
+ (n− 2)(n− 3) + 3 + 3(n− 3)

=
1

2
n(n− 1)(n− 2),

as desired.
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case number of intersections intersection multiplicity contribution to degree
1.1 0 - 0
1.2

(
n−1

2

)
(n− 3) 1 1

2(n− 1)(n− 2)(n− 3)
1.3 0 - 0
1.4

(
n−2

2

)
1 1

2(n− 2)(n− 3)
1.5 0 - 0
2.1 0 - 0
2.2 (n− 2)(n− 3) 1 (n− 2)(n− 3)
2.3 1 3 3
2.4 3(n− 3) 1 3(n− 3)
2.5 0 - 0

Table 1: Intersection points of v + S(An−1) and Σn,n−2 with their multiplicities.

4 Future Work

In future work we plan to compute the degrees of the tropical surfaces of the remaining root systems.
We also plan to determine whether these tropical surfaces can be obtained as tropicalizations of
algebraic varieties.
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