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The Robotic Arm

We consider a robotic arm R2,n of length n moving in a rectangular tunnel of width 2 without
self-intersecting. The robot consists of n links of unit length, attached sequentially, and its base
is affixed to the lower left corner:

The robot starts in a fully horizontal position, and is free to move using two kinds of local moves:
• Switching corners: Two consecutive links facing different directions swap directions.
• Flipping the end: The last link of the robot rotates 90◦.

Problem 1. Move the robot optimally from one position to another.

CAT(0) Cubical Complexes

Definition. The configuration space Sn of the robot R2,n is the following cubical complex.
• vertices: states of the robot.
• edges: moves between two states.
• k-cubes: k-tuples of moves which can be performed simultaneously.

Figure 1: The configuration spaces S4 (with states shown) and S6.

Definition. A metric space X is said to be CAT(0) if:
• there is a unique geodesic (shortest) path between any two points in X , and
• X has non-positive global curvature; i.e. all its triangles are thin:
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FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1, φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full

Theorem 1. [2] If the configuration space of a robot is CAT(0), then Problem 1
can be solved for that robot.

Checking whether an arbitrary space is CAT(0) is not easy; but for cubical complexes it can be
done completely combinatorially and topologically:

Theorem. (Gromov, [6]) A cubical complex is CAT(0) if and only if it is simply connected and
the link of every vertex is a flag simplicial complex.

Things are even easier if X is a “robotic” cubical complex, because:
• the link of every vertex is always flag [1] and
• X is simply connected if and only if it is contractible. [4]

Face Enumeration and the Euler Characteristic

By the previous observations, in order to be able to solve Problem 1, it suffices to show that Sn
is contractible. We begin with some preliminary evidence.

Theorem 1. The Euler characteristic of the configuration space Sn equals 1.

Sketch of proof. A d-cube in the configuration space Sn has 2d vertices. If one superimposes
the corresponding 2d positions of the robotic arm, one obtains a sequence of edges and squares,
possibly including a ”claw” in the last position. The number of squares is d, corresponding to the
d physically independent moves. The weight of this partial state is xnyd.

Figure 2: A partial state corresponding to a 6-cube in the configuration space S20.

We compute the generating function for partial states according to their weight, by noticing that
we can uniquely ”factor” any partial state into a concatenation of irreducible factors.

Figure 3: The partial state of Figure 2 factored into irreducibles.

We enumerate the irreducibles, and analyze how they can be glued together. We obtain:

Theorem 2. Let Sn be the configuration space for the robot of length nmoving
in a rectangular tunnel of width 2. If cn,d denotes the number of d-dimensional
cubes in Sn thenC(x, y) =

∑
n,d≥0 cn,d x

nyd equals

1 + x2 + 2x3 − x4 + xy + x2y + 4x3y + x4y + x3y2 + 2x4y2 + x5y2

1− 2x + x2 − x3 − x4 − 2x4y − 2x5y − x5y2 − x6y2 .

Proof that Theorem 2⇒Theorem 1: The Euler characteristic of Sn is χ(Sn) =
∑
d≥0(−1)dcn,d,

so the generating function for χ(Sn) is given by substituting y = −1 into our generating function
above. We obtain an expected but still beautiful miracle of cancellation:

∑
n≥0

χ(Sn)xn = C(x,−1) = 1− x− x3 + x5

1− 2x + x2 − x3 + x4 + x5 − x6 =
1

1− x = 1+x+x2+x3+ . . . .
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CAT(0) Cubical Complexes and PIPs

Having obtained preliminary evidence that Sn is CAT(0), we proceed to prove it. Instead of using
Gromov’s topological combinatorial characterization of CAT(0) cubical complexes, we use the
following purely combinatorial alternative.

Definition. A poset with inconsistent pairs (PIP) is a poset P together with a collection of
inconsistent pairs, denoted p · · · q (where p 6= q), such that p · · · q and q < q′ implies p · · · q′.

Theorem 3. [3] There is a bijection between posets with inconsistent pairs
(PIPs) and rooted CAT(0) cube complexes.

Thus to prove a cubical complex X is CAT(0) it “simply” suffices to identify its PIP! The PIP is
much simpler and serves as a “remote control” to navigate the space X and solve Problem 1.

The Remote Control: The Coral PIP

More generally, we study the robotic arm Rm,n of length n in a tunnel of any width m.

Definition. A coral snake λ of height at most m is a path of unit squares, colored alternatingly
black and red (starting with black), inside the tunnel of width m such that:
1. The snake λ starts at the bottom left of the tunnel, and takes steps up, down, and right.
2. Let λ turn from a vertical V1 to a horizontal H to a vertical V2 at corners C1 and C2. Then V1
and V2 face the same direction if and only if C1 and C2 have the same color.

The length l(λ) is the number of unit squares of λ, and the height h(λ) is the number of rows it
touches, and the width w(λ) is the number of columns it touches. We write λ ⊆ µ if λ is an initial
sub-snake of µ, obtained by restricting to the first k cells of µ for some k.

Define the coral PIP Cm,n as follows:

1. Elements: pairs (λ, s) of a coral snake λ with h(λ) ≤ m
and an integer 0 ≤ s ≤ n− l(λ)− w(λ) + 1

2. Order: (λ, s) ≤ (µ, t) if λ ⊆ µ and s ≥ t.

3. Inconsistency: (λ, s) · · · (µ, t) if λ 6⊂ µ and µ 6⊂ λ.

Theorem 4. The configuration space Sn of the
robotic arm of length n in a tunnel of width 2 is
a CAT(0) cubical complex. Its corresponding
PIP is the coral PIPC2,n defined above.

We use the coral PIP Cm,n as a remote control for the robot
Rm,n; this allows us to implement an algorithm to move
the robotic arm optimally, thus solving Problem 1.

Sketch of proof. The key idea is to encode a position of the robot into a coral snake tableau:
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and analyze the combinatorics of these tableaux.

Recent results. We have:
• an algorithm, implemented in Python, that moves the robot from one position to another effi-
ciently, solving Problem 1 for a robotic arm in a tunnel of arbitrary width.
• an explicit formula for the distance between any two positions of the robot.
• an explicit formula for the diameter of the transition graph.


