Algebraic structures on polytopes

Federico Ardila*

My talk at the 2018 Joint Math Meetings in San
Diego will discuss the algebraic and combinatorial
structure of a beautiful family of polytopes. It is
based on joint work with Marcelo Aguiar. It will be
accessible to undergraduates and will not assume any
previous knowledge of these topics.
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Figure 1: The two-dimensional associahedron and the
labeling of its faces by tubings.

Two classical problems: inverting power series.

1. Multiplicative Inversion. Consider power series
Al) =143, 5 a5y and B(z) = 1+ 3,5, ba'%y

o
that are multiplicative inverses; i.e., A(z)B(z) = 1
The first few coefficients of B(z) = 1/A(x) are:

by = —a;

by = —ag+ 2a§

bs = —asz+ 6asa; — 6(1?

by = —a4+ 8aszay + 6(1% — 36a2a% + 24@‘1L

2. Compositional Inversion. Consider power series
Clx)=a+2 517" D(@) =3+ 3,55 dnra"
that are compositional inverses; that is, C'(D(z)) = x.
The first few coefficients of D(z) = C(z){~1 are:

d = -

dy = —co+ 26%

d3 = —c3+ 5eacq — 5ci’

dy = —cq4+6c3c] + 303 — 21020? + 140‘11

*Professor of Mathematics, San Francisco State University.
Simons Professor, Mathematical Sciences Research Institute.
Profesor Adjunto, Universidad de Los Andes. federico@sfsu.edu.
Supported by NSF CAREER grant DMS-0956178 and Combina-
torics grants DMS-0801075, DMS-1440140, and DMS-1600609.

It is natural to ask: What do these coefficients count?
Two families of polytopes hold the answers.

Figure 2: The permutahedra my, mo, 73, 7y, . . ., Whose
face structures tell us how to compute the multiplica-
tive inverse of a series.

The permutahedron m, (see Figure 2) is the poly-
tope in R™ whose vertices are the n! permutations
of {1,2,...,n}, regarded as vectors. Every face of a
permutahedron is a product of permutahedra of lower
dimensions.

The face structure of permutahedra tells us how to
compute B(x) = 1/A(z). For example, the formula
for by shown above is determined by the faces of my:
e 1 truncated octahedron my,

e 8 hexagons w3 X m; and 6 squares 7o X T2,

e 36 segments mo X m X 71, and

e 24 points m X m X T X Y.

The signs are given by the dimensions of the faces.
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Figure 3: The associahedra ay,as,as,ay,..., whose

face structures tell us how to compute the composi-
tional inverse of a series.

The associahedron a, (see Figure 3) is a polytope
in R™ whose vertices correspond to the C,, = %ﬂ (27:‘)
associations of a product z - --x, into binary prod-
ucts. For example, when n = 5, one such association
is (z122)((x3w4)x5). Every face of an associahedron

is a product of associahedra of smaller dimensions.



The face structure of permutahedra tells us how to
compute D(z) = C(z){~1. For instance, the formula
for d4 shown above comes from the faces of ay:

e 1 three-dimensional associahedron ay,

e 6 pentagons az X a; and 3 squares ds X dg,

e 21 segments ay X a; X ap, and

e 14 points a; X a3 X a; X ay.

Again, the signs come from the face dimensions.

We discovered these results unexpectedly, when
studying a more general family of polytopes.

Hopf monoids and generalized permutahedra.

Edmonds, Stanley, and others taught us that to study
combinatorial objects, it is often helpful to build poly-
hedral models for them. Generalized permutahedra
(or equivalently, submodular functions) are a partic-
ularly useful family of polyhedra. They are deforma-
tions of the permutahedron, obtained by moving the
faces while preserving their directions. Two impor-
tant families are the permutahedra and associahedra,
but there are many more. Figure 4 shows a few three
dimensional examples.

Figure 4: Five generalized permutahedra.

Joni and Rota, Joyal, Stanley, and others showed
that to study combinatorial objects, it is often help-
ful to endow them with algebraic structures. In their
book “Monoidal functors, species and Hopf algebras”
(2010), Aguiar and Mahajan provide a particularly
useful framework: Hopf monoids in species. This
framework applies to families of combinatorial ob-
jects having natural operations of merging two dis-
joint objects into one, and breaking an object into
two disjoint parts, subject to various axioms.

Many families of combinatorial objects carry such
polyhedral and algebraic structures: graphs, ma-
troids, posets, set partitions, and simplicial com-
plexes, to name just a few. The main idea of this
project is to bring together these two points of view:

Theorem 1. Generalized permutahedra form a Hopf
monoid in species GP. In fact, they are the univer-
sal family of polyhedra with this algebraic structure.
The Hopf monoid GP contains or projects to the Hopf
monoids G, M, P II,SC of graphs, matroids, posets,
set partitions, and simplicial complezes.

Combinatorial Hopf monoids and their antipodes.

A key component of a Hopf monoid is its antipode
map S, which is analogous to the inverse map in a
group. The antipode is given by a very large alter-
nating sum, generally involving lots of cancellation.
A fundamental and often difficult question is to com-
pute this antipode. Figure 5 shows the antipode of a
graph and of a poset.
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Figure 5: The antipode of a graph and of a poset.

These formulas result from simplifying alternating
sums of 13, and 75 terms, respectively. How can we
systematically explain the extensive cancellation that
is taking place?

This is a rather subtle question. For instance,
although most of the Hopf algebraic structures
G,M,P,II,SC have been known for decades, opti-
mal formulas for their antipodes were not known until
very recently.

Fortunately, generalized permutahedra provide a
geometric setting where the cancellation may be com-
pletely understood topologically. This allows us to
obtain the optimal formula for the antipode of gen-
eralized permutahedra.

Theorem 2. The antipode of the Hopf monoid
GP is given by the following cancellation-free and
grouping-free formula: If p is a generalized permu-
tahedron in R™ then

> (-yrdimag,

q face of p

s(p) =

This implies optimal formulas for the antipodes of
G,M,P,II, and SC.

Inverting formal power series, revisited.

Once we discovered these results, we asked: What
happens when we apply this general theory to the
polytopes w1, o, w3, 7y, . .. and ay, dg, ag, a4, ...7 The
answer was very surprising to us: Theorem 2 implies
that the multiplicative and compositional inverses of
power series are given by the alternating sum of the
faces of permutahedra and associahedra.



Figure 6: Federico Ardila works in algebraic, geomet-
ric, and topological combinatorics, and on helping
build diverse, compassionate, and equitable mathe-
matical communities. He has advised 40 thesis stu-
dents in the US and Colombia, including 15 women
and 30 members of underrepresented groups. When
he is not at work he is probably on a futbol field,
or treasure hunting in little record stores and shar-
ing what he’s found with La Pelanga DJ Collective.
(Photo courtesy of May-Li Khoe.)



