
Algebraic structures on polytopes

Federico Ardila∗

My talk at the 2018 Joint Math Meetings in San
Diego will discuss the algebraic and combinatorial
structure of a beautiful family of polytopes. It is
based on joint work with Marcelo Aguiar. It will be
accessible to undergraduates and will not assume any
previous knowledge of these topics.
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Figure 1: The two-dimensional associahedron and the
labeling of its faces by tubings.

Two classical problems: inverting power series.

1. Multiplicative Inversion. Consider power series
A(x) = 1 +

∑
n≥1 an

xn

n! and B(x) = 1 +
∑

n≥1 bn
xn

n!
that are multiplicative inverses; i.e., A(x)B(x) = 1.
The first few coefficients of B(x) = 1/A(x) are:

b1 = −a1
b2 = −a2 + 2a21

b3 = −a3 + 6a2a1 − 6a31

b4 = −a4 + 8a3a1 + 6a22 − 36a2a
2
1 + 24a41

2. Compositional Inversion. Consider power series
C(x) = x+

∑
n≥2 cn−1x

n, D(x) = x+
∑

n≥2 dn−1x
n

that are compositional inverses; that is, C(D(x)) = x.
The first few coefficients of D(x) = C(x)〈−1〉 are:

d1 = −c1
d2 = −c2 + 2c21

d3 = −c3 + 5c2c1 − 5c31

d4 = −c4 + 6c3c1 + 3c22 − 21c2c
2
1 + 14c41
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It is natural to ask: What do these coefficients count?
Two families of polytopes hold the answers.

Figure 2: The permutahedra π1, π2, π3, π4, . . ., whose
face structures tell us how to compute the multiplica-
tive inverse of a series.

The permutahedron πn (see Figure 2) is the poly-
tope in Rn whose vertices are the n! permutations
of {1, 2, . . . , n}, regarded as vectors. Every face of a
permutahedron is a product of permutahedra of lower
dimensions.

The face structure of permutahedra tells us how to
compute B(x) = 1/A(x). For example, the formula
for b4 shown above is determined by the faces of π4:
• 1 truncated octahedron π4,
• 8 hexagons π3 × π1 and 6 squares π2 × π2,
• 36 segments π2 × π1 × π1, and
• 24 points π1 × π1 × π1 × π1.
The signs are given by the dimensions of the faces.

Figure 3: The associahedra a1, a2, a3, a4, . . ., whose
face structures tell us how to compute the composi-
tional inverse of a series.

The associahedron an (see Figure 3) is a polytope
in Rn whose vertices correspond to the Cn = 1

n+1

(
2n
n

)
associations of a product x1 · · ·xn into binary prod-
ucts. For example, when n = 5, one such association
is (x1x2)((x3x4)x5). Every face of an associahedron
is a product of associahedra of smaller dimensions.
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The face structure of permutahedra tells us how to
compute D(x) = C(x)〈−1〉. For instance, the formula
for d4 shown above comes from the faces of a4:
• 1 three-dimensional associahedron a4,
• 6 pentagons a3 × a1 and 3 squares a2 × a2,
• 21 segments a2 × a1 × a1, and
• 14 points a1 × a1 × a1 × a1.
Again, the signs come from the face dimensions.

We discovered these results unexpectedly, when
studying a more general family of polytopes.

Hopf monoids and generalized permutahedra.

Edmonds, Stanley, and others taught us that to study
combinatorial objects, it is often helpful to build poly-
hedral models for them. Generalized permutahedra
(or equivalently, submodular functions) are a partic-
ularly useful family of polyhedra. They are deforma-
tions of the permutahedron, obtained by moving the
faces while preserving their directions. Two impor-
tant families are the permutahedra and associahedra,
but there are many more. Figure 4 shows a few three
dimensional examples.

Figure 4: Five generalized permutahedra.

Joni and Rota, Joyal, Stanley, and others showed
that to study combinatorial objects, it is often help-
ful to endow them with algebraic structures. In their
book “Monoidal functors, species and Hopf algebras”
(2010), Aguiar and Mahajan provide a particularly
useful framework: Hopf monoids in species. This
framework applies to families of combinatorial ob-
jects having natural operations of merging two dis-
joint objects into one, and breaking an object into
two disjoint parts, subject to various axioms.

Many families of combinatorial objects carry such
polyhedral and algebraic structures: graphs, ma-
troids, posets, set partitions, and simplicial com-
plexes, to name just a few. The main idea of this
project is to bring together these two points of view:

Theorem 1. Generalized permutahedra form a Hopf
monoid in species GP. In fact, they are the univer-
sal family of polyhedra with this algebraic structure.
The Hopf monoid GP contains or projects to the Hopf
monoids G,M,P,Π,SC of graphs, matroids, posets,
set partitions, and simplicial complexes.

Combinatorial Hopf monoids and their antipodes.

A key component of a Hopf monoid is its antipode
map s, which is analogous to the inverse map in a
group. The antipode is given by a very large alter-
nating sum, generally involving lots of cancellation.
A fundamental and often difficult question is to com-
pute this antipode. Figure 5 shows the antipode of a
graph and of a poset.

(( +  +  _ _  s = _ + 2 3

( ( + 2 +  + 2 4 _s = _

Figure 5: The antipode of a graph and of a poset.

These formulas result from simplifying alternating
sums of 13, and 75 terms, respectively. How can we
systematically explain the extensive cancellation that
is taking place?

This is a rather subtle question. For instance,
although most of the Hopf algebraic structures
G,M,P,Π,SC have been known for decades, opti-
mal formulas for their antipodes were not known until
very recently.

Fortunately, generalized permutahedra provide a
geometric setting where the cancellation may be com-
pletely understood topologically. This allows us to
obtain the optimal formula for the antipode of gen-
eralized permutahedra.

Theorem 2. The antipode of the Hopf monoid
GP is given by the following cancellation-free and
grouping-free formula: If p is a generalized permu-
tahedron in Rn then

s(p) =
∑

q face of p

(−1)n−dim q q.

This implies optimal formulas for the antipodes of
G,M,P,Π, and SC.

Inverting formal power series, revisited.

Once we discovered these results, we asked: What
happens when we apply this general theory to the
polytopes π1, π2, π3, π4, . . . and a1, a2, a3, a4, . . .? The
answer was very surprising to us: Theorem 2 implies
that the multiplicative and compositional inverses of
power series are given by the alternating sum of the
faces of permutahedra and associahedra.
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Figure 6: Federico Ardila works in algebraic, geomet-
ric, and topological combinatorics, and on helping
build diverse, compassionate, and equitable mathe-
matical communities. He has advised 40 thesis stu-
dents in the US and Colombia, including 15 women
and 30 members of underrepresented groups. When
he is not at work he is probably on a fútbol field,
or treasure hunting in little record stores and shar-
ing what he’s found with La Pelanga DJ Collective.
(Photo courtesy of May-Li Khoe.)
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