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Summary

Generalized permutahedra are polytopes that arise in combinatorics, algebraic geometry, rep-
resentation theory, topology, and optimization. They possess a rich combinatorial structure. Out
of this structure we build a Hopf monoid in the category of species.

Species provide a unifying framework for organizing families of combinatorial objects. Many
species carry a Hopf monoid structure and are related to generalized permutahedra by means of
morphisms of Hopf monoids. This includes the species of graphs, matroids, posets, set partitions,
linear graphs, hypergraphs, simplicial complexes, and building sets, among others. We employ
this algebraic structure to define and study polynomial invariants of the various combinatorial
structures.

We pay special attention to the antipode of each Hopf monoid. This map is central to the
structure of a Hopf monoid, and it interacts well with its characters and polynomial invariants. It
also carries information on the values of the invariants on negative integers. For our Hopf monoid
of generalized permutahedra, we show that the antipode maps each polytope to the alternating
sum of its faces. This fact has numerous combinatorial consequences.

We highlight some main applications:

• We obtain uniform proofs of numerous old and new results about the Hopf algebraic and
combinatorial structures of these families. In particular, we give optimal formulas for the
antipode of graphs, posets, matroids, hypergraphs, and building sets. They are optimal in
the sense that they provide explicit descriptions for the integers entering in the expansion
of the antipode, after all coefficients have been collected and all cancellations have been
taken into account.
• We show that reciprocity theorems of Stanley and Billera–Jia–Reiner (BJR) on chromatic

polynomials of graphs, order polynomials of posets, and BJR-polynomials of matroids are
instances of one such result for generalized permutahedra.
• We explain why the formulas for the multiplicative and compositional inverses of power

series are governed by the face structure of permutahedra and associahedra, respectively,
providing an answer to a question of Loday.
• We answer a question of Humpert and Martin on certain invariants of graphs and another

of Rota on a certain class of submodular functions.

We hope our work serves as a quick introduction to the theory of Hopf monoids in species,
particularly to the reader interested in combinatorial applications. It may be supplemented with
[2, 3] which provide longer accounts with a more algebraic focus.
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Introduction

Hopf monoids and generalized permutahedra. Joyal [16], Joni and Rota [60], Schmitt
[83], Stanley [92], and others, taught us that to study combinatorial objects, it is often useful to
endow them with algebraic structures. Aguiar and Mahajan’s Hopf monoids in species [2] provide
an algebraic framework that supports many familiar combinatorial structures.

Edmonds [36], Lovász [67], Postnikov [77], Stanley [88], and others, taught us that to study
combinatorial objects, it is often useful to build a polyhedral model for them. Generalized permu-
tahedra constitute an ubiquitous family of polytopes which models many combinatorial structures.
Generalized permutahedra arose in the theory of combinatorial optimization as polymatroids. Each
such polytope is defined by a unique submodular function.

Our work brings together these two points of view. We endow the family of generalized permu-
tahedra with the structure of a Hopf monoid GP and show that many other Hopf monoids built
out of combinatorial structures find natural models therein, in the sense that they map into GP
(or certain quotients of GP) by means of morphisms of Hopf monoids.

a

b

d

c
abd,c ad,bcµΔ

We deal with Hopf monoid structures on (the species of) graphs, matroids, posets, set partitions,
simplicial complexes, building sets, and (an additional structure on) simple graphs, to name a few.
On these and many other families of combinatorial objects, it is possible to carry out constructions
of merging and breaking : procedures for building a new object out of two, or for decomposing a given
object into two. When these procedures obey certain simple rules, the structure can be organized
into that of a Hopf monoid in the category of species. The combinatorial objects constitute the
elements of the species, merging gives rise to the product, and breaking to the coproduct of the
Hopf monoid. A Hopf monoid is a structure akin to that of a Hopf algebra, but better suited to
handle these examples rooted in combinatorics.

We use this framework to unify known results, obtain new ones, and answer questions of a
combinatorial nature. We discuss some of these applications next.

Application A. Antipode formulas. Hopf monoids in species, Hopf algebras, and groups,
may all be seen as instances of the general notion of Hopf monoid in a braided (or symmetric)
monoidal category. A Hopf monoid H carries an antipode s : H→ H, a map which is analogous to
inversion in a group. For the Hopf monoids in species we consider, the existence of the antipode is
guaranteed, much as is the existence of the reciprocal of a formal power series of the form 1+xF (x).
The antipode maps a combinatorial structure to a formal sum of structures of the same kind. It is
given by a large alternating sum, usually involving lots of cancellation. A fundamental task is to
obtain a cancellation-free formula for the antipode.

Figure 1 gathers a few examples showing the final result of the calculation, after all cancellations
have been taken into account. The combinatorial structures are represented by pictures whose
meaning is explained in later sections. The formulas arise from alternating sums of 13, 75, and 541
terms, depending on whether the cardinality of the ground set is 3, 4, or 5. One of our main goals
is to provide a uniform explanation for these formulas. It turns out that in each case the result is
dictated by a polyhedron that models the given combinatorial structure. We explain this in more
detail.
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Partitions Π (Section 5.6):
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Partitions into paths F (Section 5.7):
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Figure 1. Antipode calculations in Hopf monoids
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First, we address the antipode problem at the level of generalized permutahedra, where the
inherent geometry and topology enable us to understand the cancellation completely. The following
is one of our main results.

Theorem (Theorem 1.6.1). The antipode for the Hopf monoid of generalized permutahedra GP
is given by

sI(p) = (−1)|I|
∑

q face of p

(−1)dim q q

for each generalized permutahedron p ⊆ RI .

Then, we relate the Hopf monoids G,M,P,Π,F to the Hopf monoid GP of generalized per-
mutahedra by means of morphisms of Hopf monoids. Such morphisms preserve antipodes. For
example, the graphic zonotope Zg of a graph g is a generalized permutahedron, and the map
g 7→ Zg is a morphism of Hopf monoids G → GP. To calculate s(g) in G, we calculate s(Zg) in
GP using Theorem 1.6.1. The faces of Zg are themselves graphic zonotopes associated to certain
quotients of g (Lemma 3.2.4). From here, an explicit formula for s(g) emerges (Corollary 3.2.7). In
general, combining Theorem 1.6.1 with an understanding of the combinatorial structure of a given
generalized permutahedron, yields a formula generalizing those in Figure 1. The coefficients in the
formula of Theorem 1.6.1 are ±1 (or 0). The larger coefficients in some of the formulas in Figure
1 occur when the morphism to GP is not injective.

We have gathered the main combinatorial structures that we deal with in the table below.
Each one gives rise to a Hopf monoid in species. The Hopf monoids are interrelated by means of
morphisms; the table is loosely organized and does not reflect the various connections. The table
shows the corresponding class of generalized permutahedra in each case. It is worth mentioning
at this point that we deal with possibly unbounded generalized permutahedra. These polyhedra
include certain cones associated to posets. The remaining classes of generalized permutahedra in
the table are bounded polytopes.

combinatorial structure polyhedral model Hopf monoid

(partitions into disjoint) sets (products of) permutahedra Π ∼= Π

(partitions into disjoint) paths (products of) associahedra F ∼= A

graphs graphic zonotopes G, SG

hypergraphs hypergraphic polytopes HG

simplicial complexes simplicial complex polytopes SC

matroids matroid polytopes M

graphic matroids graphic matroid polytopes Γ

building sets nestohedra BS

simple graphs graph associahedra W

submodular function generalized permutahedra SF ∼= GP, GP

extended submodular function extended generalized permutahedra SF+ ∼= GP+, GP+

partial orders (posets) top-cones in the braid arrangement P

preorders (preposets) cones in the braid arrangement Q ∼= SF0,∞ ∼= GPcone
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Some of these Hopf monoids are defined for the first time here, others come from [2]. In many
cases, the constructions have roots in earlier literature going back to Joni and Rota [60], Schmitt
[84, 83, 85], and others. The paper by Haiman and Schmitt [53] stands out as the first one to
derive an antipode formula of combinatorial significance. Another important landmark is the paper
of Billera, Jia, and Reiner [17] where Hopf algebraic and polyhedral considerations on matroids
were analyzed together for the first time.

These earlier sources deal with a Hopf algebra which we now regard as derived from the Hopf
monoid by means of the constructions of [2, Chapter 15]. (See Section 1.1.10 for more on this
point.) For example, the Hopf monoid of paths gives rise to the Faà di Bruno Hopf algebra, an
object introduced in [60] and with roots in classical work on the composition of two power series.
On a few additional occasions, these associated Hopf algebras have been considered in the recent
literature, without consideration of Hopf monoids and independently of our work. These include
the cases of building sets [49], simplicial complexes [14], and polymatroids [32].

Our results on the antipode encompass new and existing results in a unified manner. The
original result of Haiman and Schmitt is on the antipode of the Faà di Bruno Hopf algebra [53,
Theorem 4]. More recent results are by Humpert and Martin [58, Theorem 3.1] (on the antipode
for graphs), by Benedetti, Hallam, and Machacek [14, Theorem 4] (on the antipode for simplicial
complexes), and by Bucher, Eppolito, Jun, and Matherne [25, 24] (on the antipode for matroids).

Application B. Character theory and reciprocity theorems. Consider the following
combinatorial invariants: Whitney’s chromatic polynomial χg of a graph g, Stanley’s strict order
polynomial χp of a poset p, and the Billera–Jia–Reiner polynomial χm of a matroid m. These
polynomials are determined by the following properties which hold for n ∈ N:
• χg(n) = number of proper vertex n-colorings of g.
• χp(n) = number of strictly order preserving n-labelings of p.
• χm(n) = number of n-weightings of m under which m has a unique maximum basis.
Billera, Jia, and Reiner were the first to consider the matroid assignment m 7→ χm, and to under-
stand it as a Hopf morphism. They compared it with the graph assignment g 7→ χg(n), which also
arises Hopf algebraically, writing:

“As far as we know, this [Hopf] morphism is of a different nature.” 1

We show that in fact these two morphisms – as well as the poset morphism p 7→ χp(n) – are of
exactly the same nature. To see this, one needs to view them inside the Hopf monoid of extended
generalized permutahedra; something that their work helped us foresee.

One may wonder about a combinatorial description for the quantities obtained by plugging in
negative integer values into these polynomials. The answer is provided by the following combina-
torial reciprocity theorems. For n ∈ N:
• |χg(−n)| = number of compatible pairs of an n-coloring and an acyclic orientation of g.
• |χp(−n)| = number of weakly order preserving n-labelings of p.
• |χm(−n)| = number of pairs of an n-weighting w of m and a w-maximum basis.

The first two are due to Stanley [89, Theorem 1.2], [87, Theorem 3] and the third to Billera, Jia,
and Reiner [17, Theorem 6.3]. In Chapter 4, we cast these results in a unified setting, showing that
they are all instances of the same general fact that holds for extended generalized permutahedra.
We explain this general fact employing the notion of a character on a Hopf monoid.

1They wrote this about the assignment of a quasisymmetric function to a matroid m and a graph g, but there is
no essential difference with the assignment of a polynomial. As they explain in [17], a character on a Hopf algebra
or monoid gives rise to a polynomial and a quasisymmetric function. For graphs and matroids, this gives rise to the
polynomials we discuss and the quasisymmetric functions they discuss.
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The choice of a character on a Hopf monoid gives rise to a polynomial χx(n) for each element
x of the monoid. This is an invariant of the structure x, in the sense that isomorphic structures
yield the same polynomial. Furthermore, this polynomial satisfies a reciprocity rule as follows: up
to a sign, χx(−n) equals χs(x)(n). This is Proposition 4.1.5. It relates values of the invariant on
negative integers to values on positive integers, with the antipode bridging between the two. A
combinatorial understanding of the antipode may thus be exploited to answer the question at hand.

As before, we first construct and analyze the invariant at the level of generalized permutahedra.
The starting point is a character which sends points to 1 and all other generalized permutahedra
to 0. We then specialize by employing the morphisms from G, M, and P to GP. This gives the
three combinatorial reciprocity theorems above.

In Chapter 4 we employ the heavier but more precise notation χI(x)(n), where I is the ground
set, x ∈ H[I] is the given combinatorial structure, and n is the polynomial variable.

Application C. Inversion of formal power series. Figure 2 shows the first few (standard)
permutahedra πn and (Loday) associahedra an. Both π1 and a1 are points, π2 and a2 are segments.
While π3 is a hexagon, a3 is a pentagon. Next come π4, a truncated octahedron, and a4, the
three-dimensional associahedron. There is one permutahedron in each dimension, and every face
of a permutahedron is a product of permutahedra. There is one associahedron in each dimension,
and every face of an associahedron is a product of associahedra.

Figure 2. The permutahedra π1, π2, π3, π4 (left) and associahedra a1, a2, a3, a4 (right).

Multiplicative Inversion. Consider formal power series

(1) A(x) =
∑
n≥0

an
xn

n!
and B(x) =

∑
n≥0

bn
xn

n!
such that A(x)B(x) = 1,

assuming for simplicity a0 = 1. The first few coefficients of B(x) = 1/A(x) are:

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 6a2a1 − 6a3
1

b4 = −a4 + 8a3a1 + 6a2
2 − 36a2a

2
1 + 24a4

1

What do these numbers count? The face structure of permutahedra tells the full story. For
example, the formula for b4 accounts for the faces of the permutahedron π4: 1 truncated octahedron
π4, 8 hexagons π3×π1, 6 squares π2×π2, 36 segments π2×π1×π1, and 24 points π1×π1×π1×π1.
The signs in the formula are determined by the parity of the face dimensions.
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Compositional Inversion. The problem of inverting power series with respect to composition is
classical and falls under the heading of Lagrange inversion. There exists a variety of approaches to
the subject and vast work on variants and generalizations. See [91, Chapter 5] for an introduction,
and [46] for a recent survey.

Consider formal power series

(2) C(x) =
∑
n≥1

cn−1x
n and D(x) =

∑
n≥1

dn−1x
n such that C(D(x)) = x,

assuming for simplicity c0 = 1. The first few coefficients of D(x) = C(x)〈−1〉 are:

d1 = −c1

d2 = −c2 + 2c2
1

d3 = −c3 + 5c2c1 − 5c3
1

d4 = −c4 + 6c3c1 + 3c2
2 − 21c2c

2
1 + 14c4

1

Now it is the face structure of associahedra that tells us what these numbers count. For example,
the formula for d4 accounts for the faces of the associahedron a4: 1 three-dimensional associahedron
a4, 6 pentagons a3×a1 and 3 squares a2×a2, 21 segments a2×a1×a1, and 14 points a1×a1×a1×a1.
The signs are again determined by the parity of the face dimensions. This description is a form of
combinatorial Lagrange inversion.

Combinatorial formulas for the coefficients of bn and dn above and combinatorial formulas for
the face enumeration of permutahedra and associahedra have been known for a long time; and
these formulas do coincide. However, our treatment seems to be the first to truly explain the
geometric connection. We derive these inversion formulas in a unified fashion, exploiting the fact
that both permutahedra and associahedra are particular generalized permutahedra. In the case of
compositional inversion and associahedra, this answers a 2005 question of Loday [66].

Our approach is again Hopf algebraic. The set of characters on a Hopf monoid is endowed
with a group structure. The product is convolution and the inversion is precomposition with the
antipode. For the Hopf monoid Π, characters may be identified with power series A(x) as in (1),
with convolution corresponding to multiplication. It follows that to understand the coefficients of
B(x), it suffices to understand the antipode of Π. The Hopf monoid F and its antipode may be
similarly employed to deal with compositional inversion. We carry this work out in Sections 2.2,
2.4, 5.6 and 5.7.

Outline. The material is organized into five chapters. Chapter 1 sets the foundations and must
be read first. The remaining chapters, while interconnected in various ways, may be approached
independently of each other. Section 4.3 depends on Chapter 3, Sections 5.6 and 5.7 depend on
Chapter 2.

Chapter 1: The Hopf monoid GP and its antipode. This chapter contains the essential back-
ground on Hopf monoids in species (Section 1.1), introduces a number of examples (Section 1.2)
and goes on to discuss the central object in this work, the Hopf monoid of generalized permutahedra
(Sections 1.3–1.5). Normal equivalence is a relation among polytopes. The quotient GP of the
Hopf monoid GP under this relation is defined in Section 1.4.3. In Section 1.6 we prove Theorem
1.6.1: this main result establishes that the antipode of GP maps a polytope to the alternating sum
of its faces. The Hopf monoids defined in Section 1.2 are those of graphs G, matroids M, posets
P, set partitions Π, and partitions into paths F. The chapter may serve as a quick introduction
to Hopf monoids in species and to illustrate their ubiquity in combinatorics.
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Chapter 2: Permutahedra, associahedra, and inversion. This chapter connects two particular
Hopf monoids to operations on power series. This necessitates one more ingredient from the general
theory of Hopf monoids: the notion of character and the group structure on the set of characters
on a Hopf monoid. This is discussed in the opening Section 2.1. The connection to power series
is covered in Sections 2.2 and 2.3. Restricting generalized permutahedra to products of standard
permutahedra yields a Hopf submonoid Π of GP. The group of characters on Π is isomorphic
to the group of invertible power series under multiplication (normalized by a0 = 1). Interestingly,
a parallel story unfolds replacing standard permutahedra by associahedra. This results in a Hopf
submonoid A and a group of characters isomorphic to the group of invertible power series under
composition (normalized by c0 = 1). Section 2.4 then uses these results and the antipode of GP to
derive Application C and obtain a unified explanation for the formulas computing the inverse of a
power series with respect to either multiplication or composition. This material is complemented
later in Sections 5.6 and 5.7, where it is shown that Π is isomorphic to Π, and A to F.

Chapter 3: Submodular functions arising from combinatorial structures. This chapter centers
around the notion of submodular function. Each generalized permutahedron in RI is determined by
a unique submodular function on the Boolean poset 2I with values in R. Generalized permutahedra
and submodular functions thus constitute cryptomorphic notions. We review this fact in Section
3.1. Several combinatorial structures give rise to submodular functions (and hence to generalized
permutahedra). The notion of diminishing returns offers a useful alternative characterization for
these functions. Submodular functions associated to graphs, matroids, and posets are discussed in
Sections 3.2, 3.3, and 3.4. These are the cut function of a graph, the rank function of a matroid,
and the order ideal indicator function of a poset. To cover the latter case, we consider extended
submodular functions, which take values in R ∪ {∞}. They correspond to certain unbounded
polyhedra which we call extended generalized permutahedra. They give rise to the Hopf monoid
GP+.

In this manner these combinatorial structures are modeled by particular classes of (extended)
generalized permutahedra: graphic zonotopes, matroid polytopes, and poset cones. From our
perspective, this allows us to view G and M as Hopf submonoids of GP (and P as a Hopf submonoid
of GP+) and then to obtain antipode formulas for each of these Hopf monoids as corollaries to
Theorem 1.6.1. This accomplishes Application A. In the case of graphs, a closely related result
was obtained independently by Humpert and Martin [58, Theorem 3.1]. These authors obtained
the corresponding result for the Hopf algebra associated to G. In Section 3.2 we also answer
some questions from [58, Section 5] on characters of complete graphs. In the case of matroids, a
formula for the antipode of the associated Hopf algebra was obtained by Bucher, Eppolito, Jun,
and Matherne in [24, Theorem 4.7].

Chapter 4: Characters, polynomial invariants, and reciprocity. This chapters turns to Applica-
tion B. The opening Section 4.1 discusses the construction of polynomial invariants of combinatorial
structures out of the choice of a character on the corresponding Hopf monoid. We derive general
properties of these invariants in Propositions 4.1.1–4.1.3, and obtain a general reciprocity theo-
rem in Proposition 4.1.5. Section 4.2 carries out this construction for a particular character of
GP. In Section 4.3 we derive the reciprocity theorems of Stanley on graphs and posets and of
Billera-Jia-Reiner on matroids as consequences.

Chapter 5: Hypergraphs, building sets, and related combinatorial structures. The final chapter
focuses on a particular family of generalized permutahedra, the hypergraphic polytopes. In Section
5.1, we provide a characterization of these objects answering a question of Rota. These polytopes
give rise to a Hopf submonoid HGP of GP. Section 5.2 introduces a Hopf monoid HG of hyper-
graphs. It is isomorphic to HGP and contains G. We study other interesting Hopf submonoids
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of HG. One of them is the Hopf monoid SC of simplicial complexes. We employ once again
Theorem 1.6.1 to derive an antipode formula for SC. This offers a geometric explanation for the
antipode formula for the associated Hopf algebra, which was obtained earlier by Benedetti, Hallam,
and Machacek [14]. Another family of combinatorial objects (building sets) and their associated
polytopes (nestohedra) are considered in Section 5.4, together with the Hopf monoids they give
rise to. A third Hopf monoid of graphs, with operations of ripping and sewing, is introduced in
Section 5.5. It is denoted W and it maps to the Hopf monoid of building sets. Sections 5.6 and
5.7 discuss how W contains both the Hopf monoid Π of set partitions, and the Hopf monoid F of
paths, giving rise to some interesting enumerative consequences.

Conventions. We work over a field k of characteristic 0. We use H for Hopf monoids in set
species, H for Hopf monoids in vector species, and H for Hopf algebras.

Future directions

The Hopf monoid structure on generalized permutahedra has an interesting connection with
McMullen’s polytope algebra [70]. This structure descends to the quotient Hopf monoid I(GP) =
GP/ie, where ie is generated by the inclusion-exclusion relations P =

∑
Q∈P(−1)dimP−dimQQ for

any polyhedral subdivision P of a generalized permutahedron P into generalized permutahedra.
In particular, the antipode now takes the elegant form sI(p) = (−1)|I|−dim pp◦, where p◦ denotes
the relative interior of p. This was shown by Ardila and Sanchez in [12] and by Bastidas in
[13]. Ardila and Sanchez further show that this Hopf theoretic framework offers a simple, unified
explanation for many new and old valuative invariants on matroids, graphs, and posets that have
recently arisen in combinatorics and algebraic geometry. They also prove that I(GP+) satisfies a
natural universality property, which partially explains the ubiquity of generalized permutahedra
and valuative invariants in the theory of Hopf monoids. Bastidas further shows that this polytope
algebra is a module over the Tits algebra of the braid arrangement, and describes its composition
factors combinatorially in terms of permutation statistics. He also obtains analogous results for the
signed braid arrangement and signed permutations.

Another main direction in which this work may be continued consists in extending its construc-
tions to the setting of deformations of Coxeter permutahedra. The latter are polytopal deformations
of the Coxeter permutahedron πW corresponding to a finite Coxeter group W . The polyhedral foun-
dations of this theory have been laid out by Ardila, Castllo, Eur, and Postnikov [8]. They include
connections to Fomin-Zelevinsky and Hohlweg-Lange-Thomas’s Coxeter associahedra [40, 55], Fu-
jishige’s bisubmodular functions [41], Gelfand and Serganova’s Coxeter matroids [22, 21], Reiner’s
signed posets [78], Stembridge’s Coxeter root cones [95], Zaslavsky’s signed graphs [101], and the
weight polytopes describing the representations of semisimple Lie algebras [42]. An extension of
the theory of Hopf monoids that admits a real hyperplane arrangement as an input has been de-
veloped in recent years by Aguiar and Mahajan [4, 5]. A theory that incorporates aspects specific
to Coxeter arrangements is being developed by those authors and by Rodŕıguez [79].

We list other aspects that appear worth pursuing.

• There is a morphism of Hopf monoids GP→ P which maps a generalized permutahedron
to the sum over its vertices of the normal cones at those vertices. There is a similar map
that sums normal cones over all faces. These and related maps deserve study.
• The primitive part of the Hopf monoid G is described by Aguiar and Mahajan in [3,

Section 9.4]. The primitive part of several other Hopf submonoids of GP are given by
Sanchez in [81].
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CHAPTER 1

The Hopf monoid of generalized permutahedra

1.1. A brief guide to Hopf monoids in species

The theory of Hopf monoids in species developed in [2] constitutes a useful algebraic tool to
study many families of combinatorial objects of interest. The structure captures procedures for
merging two disjoint objects into one, and for breaking an object into two disjoint parts. When
certain simple axioms are satisfied, these procedures define the product and coproduct in a Hopf
monoid. One can then use the general theory to obtain numerous combinatorial consequences.
In Sections 1.1, 2.1, and 4.1 we outline the most relevant combinatorial features of this theory.
Our exposition is self-contained; the interested reader may find more details on some of these
constructions in [2].

1.1.1. Set species. We begin by reviewing Joyal’s notion of set species [15, 61]. This is a
framework, rooted in category theory, used to systematically study combinatorial families and the
relationships between them.

Definition 1.1.1. A set species P consists of the following data.

• For each finite set I, a set P[I].
• For each bijection σ : I → J , a map P[σ] : P[I] → P[J ]. These should be such that

P[σ ◦ τ ] = P[σ] ◦ P[τ ] and P[id] = id.

It follows that each map P[σ] is invertible, with inverse P[σ−1]. Sometimes we refer to an element
x ∈ P[I] as a structure (of species P) on the set I.

Let [n] := {1, . . . , n}. It also follows that, for each for n ∈ N, the symmetric group Sn acts on
the set P[n] = P[{1, . . . , n}]. The action of σ ∈ Sn is the map P[σ] : P[n]→ P[n].

In the examples that interest us, P[I] is the set of all combinatorial structures of a certain kind
that can be constructed on the ground set I. For each bijection σ : I → J , the map P[σ] takes each
structure on I and relabels its ground set to J according to σ.

Example 1.1.2. Define a set species L as follows. For any finite set I, L[I] is the set of all
linear orders on I. If ` is a linear order on I and σ : I → J is a bijection, then L[σ](`) is the linear
order on J for which j1 < j2 if σ−1(j1) < σ−1(j2) in `. If we regard ` as a list of the elements of I,
then L[σ](`) is the list obtained by replacing each i ∈ I for σ(i) ∈ J .

For instance, L[{a, b, c}] = {abc, bac, acb, bca, cab, cba} and if σ : {a, b, c} → {1, 2, 3} is given by
σ(a) = 1, σ(b) = 2, σ(c) = 3, then L[σ] : L[{a, b, c}]→ L[{1, 2, 3}] is given by σ(abc) = 123, σ(acb) =
132, σ(bac) = 213, σ(bca) = 231, σ(cab) = 312, σ(cba) = 321.

Definition 1.1.3. A morphism f : P → Q between set species P and Q is a collection of
maps fI : P[I] → Q[I] which satisfy the following naturality axiom: for each bijection σ : I → J ,
fJ ◦ P[σ] = Q[σ] ◦ fI .

Example 1.1.4. An automorphism of the set species L of linear orders is given by the reversal
maps revI : L[I]→ L[I] defined by revI(a1a2 . . . ai) = ai . . . a2a1 for each linear order on I written
as a list a1a2 . . . ai.

15
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1.1.2. Hopf monoids in set species. A set species P is connected if the set P[∅] is a singleton.
We make the assumption that all species are connected throughout this work; occasionally we do this
explicitly. This will let us state the Hopf monoid axioms more briefly. In particular, the existence
of an antipode will not be required in the definition, as this is guaranteed by connectedness. The
antipode of a Hopf monoid is discussed later in Section 1.1.8.

A decomposition of a finite set I is a finite sequence (S1, . . . , Sk) of pairwise disjoint subsets of
I whose union is I. In this situation, we write

I = S1 t · · · t Sk.
Note that I = S t T and I = T t S are distinct decompositions of I (unless I = S = T = ∅).

Definition 1.1.5. A connected Hopf monoid in set species consists of the following data.

• A connected set species H.
• For each finite set I and each decomposition I = S t T , product and coproduct maps

H[S]×H[T ]
µS,T−−−→ H[I] and H[I]

∆S,T−−−→ H[S]×H[T ]

satisfying the naturality, unitality, associativity, and compatibility axioms below.

Before stating the axioms of a Hopf monoid, we discuss some terminology and notation. The
collection of maps µ (resp. ∆) is called the product (resp. the coproduct) of the Hopf monoid H.
Fix a decomposition I = S t T . For x ∈ H[S], y ∈ H[T ], and z ∈ H[I] we write

(x, y)
µS,T−−−→ x · y and z

∆S,T−−−→ (z|S , z/S).

We call x · y ∈ H[I] the product of x and y, z|S ∈ H[S] the restriction of z to S and z/S ∈ H[T ] the
contraction of S from z. Finally, we call the element 1 ∈ H[∅] the unit of H.

The product keeps track of how we merge two disjoint structures x on S and y on T into a
single structure x · y on I, according to a suitable combinatorial rule. The coproduct keeps track
of how we break up a structure z on I into a structure z|S on S and a structure z/S on T . Section
1.2 features five important examples.

The axioms are as follows. We note that each axiom can be rephrased in terms of a commutative
diagram; we invite the reader to draw those diagrams or to see [2, Sections 8.2–8.3] for details.

Naturality. For each decomposition I = S t T , each bijection σ : I → J , and any choice of
x ∈ H[S], y ∈ H[T ], and z ∈ H[I], we have

H[σ](x · y) = H[σ|S ](x) ·H[σ|T ](y),

H[σ](z)|S = H[σ|S ](z|S), H[σ](z)/S = H[σ|T ](z/S).

This says that relabeling may be performed either before or after merging and breaking, without
altering the result.

Unitality. For each I and x ∈ H[I], we must have

x · 1 = x = 1 · x, x|I = x = x/∅.

This says that merging and breaking are trivial when the decomposition of the underlying set I is
trivial; here 1 represents the unique structure (of species H) on the empty set.

Associativity and Coassociativity. For each decomposition I = R t S t T , and any
x ∈ H[R], y ∈ H[S], z ∈ H[T ], and w ∈ H[I], we must have

x · (y · z) = (x · y) · z,
(w|RtS)|R = w|R, (w|RtS)/R = (w/R)|S , w/RtS = (w/R)/S .



1.1. A BRIEF GUIDE TO HOPF MONOIDS IN SPECIES 17

This says that successively merging three combinatorial structures on R,S, T into one structure
on I produces a coherent result (associativity) – namely ∆R,S,T (x, y, z) = x · y · z – and similarly
for breaking a single structure on I into three structures on R,S, T (coassociativity) – namely
∆R,S,T (w) = (w|R, (w/R)|S , w/RtS). By induction, merging and breaking are then also well-defined
for decompositions of I into more than three parts (higher (co)associativity).

Compatibility. Fix decompositions StT = I = S′tT ′, and consider the pairwise intersections
A := S ∩ S′, B := S ∩ T ′, C := T ∩ S′, D := T ∩ T ′ as illustrated below. In this situation, for any
x ∈ H[S] and y ∈ H[T ], we must have

(x · y)|S′ = x|A · y|C and (x · y)/S′ = x/A · y/C .

(3)

'

&
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T
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&
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%
S′ T ′
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&
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C D

This says that “merging then breaking” is the same as “breaking then merging”. If we start with
structures x and y on S and T , we can merge them into a structure x · y on I, and then break
the result into structures on S′ and T ′. We can also break x (resp. y) into two structures on A
and B (resp. C and D), and merge the resulting pieces into structures on S′ and T ′. These two
procedures should give the same answer.

This completes the definition of connected Hopf monoid in set species. In the cases that interest
us, naturality and unitality are immediate and associativity is very easy; usually the only non-trivial
condition to be checked is compatibility.

We remark that in more general contexts, the definition of a Hopf monoid also requires the
existence of an antipode map, which we introduce in Section 1.1.8. In the connected case, which is
the one that interests us, this map always exists; see also Remark 1.1.12.

Note also that the unitality axiom determines the maps µS,T and ∆S,T uniquely when one of
the subsets S or T is empty. Thus, when specifying a Hopf monoid structure, one may restrict
attention to the case when both are proper and nonempty.

Definition 1.1.6. A morphism f : H → K between Hopf monoids H and K is a morphism of
species which preserves products, restrictions and contractions; that is, we have

fJ
(
H[σ](x)

)
= K[σ]

(
fI(x)

)
for all bijections σ : I → J and all x ∈ H[I],

fI(x · y) = fS(x) · fT (y) for all I = S t T and all x ∈ H[S], y ∈ H[T ],
fS(z|S) = fI(z)|S , fT (z/S) = fI(z)/S for all I = S t T and all z ∈ H[I].

Units are preserved by connectedness.

Suppose H is a Hopf monoid. Note that if I = S t T is a decomposition, then I = T t S is
another. Therefore, any x ∈ H[S] and y ∈ H[T ] give rise to two structures x · y and y · x on I.
Similarly, any z ∈ H[I] gives rise to two pairs of structures (z|S , z/S) and (z/T , z|T ) on (S, T ).

Definition 1.1.7. A Hopf monoid H is commutative if x · y = y ·x for any I = S tT , x ∈ H[S]
and y ∈ H[T ]. It is cocommutative if (z|S , z/S) = (z/T , z|T ) for any I = S t T and z ∈ H[I]; it is
enough to check that z/S = z|T for any I = S t T and z ∈ H[I].
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Example 1.1.8. We now define a Hopf monoid structure on the species L of linear orders
of Example 1.1.2. To this end, we define the operations of concatenation and restriction. Let
I = S t T . If `1 = s1 . . . si is a linear order on S and `2 = t1 . . . tj is a linear order on T , their
concatenation is the following linear order on I:

`1 · `2 := s1 . . . si t1 . . . tj .

Given a linear order ` on I, the restriction ` |S is the list consisting of the elements of S written in
the order in which they appear in `.

The product (merging) and coproduct (breaking) of the Hopf monoid L are defined by

L[S]× L[T ]
µS,T−−−→ L[I] L[I]

∆S,T−−−→ L[S]× L[T ]

(`1, `2) −−−→ `1 · `2 ` −−−→ (`|S , `|T ).

Given linear orders `1 on S and `2 on T , the compatibility axiom in Definition 1.1.5 boils down
to the fact that the concatenation of `1|A and `2|C agrees with the restriction to S′ of `1 · `2. The
verification of the remaining axioms is similar.

By definition, `/S = ` |T , so L is cocommutative.

Many Hopf monoids are presented in this monograph, revolving around the main example of
the Hopf monoid of generalized permutahedra (Section 1.4). Additional examples are given in [2,
Chapters 11–13].

1.1.3. Opposite and co-opposite. Given a Hopf monoid H, the opposite Hopf monoid Hop

has the same coproduct as H, while the product is reversed: µS,T (x, y) in Hop is µT,S(y, x) in H.
For example, for `1 and `2 as in Example 1.1.8, the product in Lop is

`1 · `2 = t1 . . . tj s1 . . . si.

The co-opposite Hopf monoid Hcop is defined by keeping the product and reversing the coproduct:
if ∆S,T (z) = (z|S , z/S) in H, then ∆S,T (z) = (z/T , z|T ) in Hcop.

One easily verifies that Hop and Hcop are Hopf monoids. H is (co)commutative if and only if
H = Hop (H = Hcop).

The reader may verify that the automorphism of the species L of Example 1.1.4 is an isomor-
phism of Hopf monoids L→ Lop.

1.1.4. Vector species. All vector spaces and tensor products below are over a fixed field k.
A vector species P consists of the following data.

• For each finite set I, a vector space P[I].
• For each bijection σ : I → J , a linear map P[σ] : P[I]→ P[J ].

These are subject to the same axioms as in Definition 1.1.1. Again, these axioms imply that every
such map P[σ] is invertible. A morphism of vector species f : P→ Q is a collection of linear maps
fI : P[I]→ Q[I] satisfying the naturality axiom of Definition 1.1.3.

1.1.5. Hopf monoids in vector species.

Definition 1.1.9. A connected Hopf monoid in vector species is a vector species H with H[∅] =
k that is equipped with linear maps

H[S]⊗H[T ]
µS,T−−−→ H[I] and H[I]

∆S,T−−−→ H[S]⊗H[T ]
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for each decomposition I = S t T , subject to axioms that naturally generalize those in Defini-
tion 1.1.5. The axioms require the commutativity of certain diagrams; see [2, Sections 8.2–8.3] for
details.

We employ similar notations as for Hopf monoids in set species; namely,

µS,T (x⊗ y) = x · y and ∆S,T (z) =
∑

z|S ⊗ z/S ,

the latter being a variant of Sweedler’s notation for Hopf algebras. In general,
∑
z|S ⊗ z/S stands

for a tensor in H[S]⊗H[T ]; individual elements z|S and z/S may not be defined.
A morphism of Hopf monoids in vector species is a morphism of vector species which preserves

products, coproducts, and the unit, as in Definition 1.1.6.

1.1.6. Linearization. Consider the linearization functor

Set −→ Vec,

which sends a set to the vector space with basis the given set. Composing a set species P with the
linearization functor gives a vector species, which we denote P. If H is a Hopf monoid in set species,
then its linearization H is a Hopf monoid in vector species. In this situation, the coproduct of H
is of the form ∆S,T (z) = z|S ⊗ z/S , where z ∈ H[I] is a basis element of H[I], and the right-hand
side is a pure tensor.

Most, but not all, of the Hopf monoids considered in this monograph are in set species. The
linearization functor allows us to regard them as Hopf monoids in vector species also.

Remark 1.1.10. The category of vector species carries a symmetric monoidal structure. In any
symmetric monoidal category one may consider the notion of Hopf monoid. A Hopf monoid in the
category of sets under cartesian product is precisely a group. A Hopf monoid in vector species is a
Hopf monoid in this categorical sense. For more details about this point of view, and a discussion
of set species versus vector species, see [2, Chapter 8].

1.1.7. Higher products and coproducts. Let H be a Hopf monoid in vector species. The
following is a consequence of the associativity axiom. For any decomposition I = S1t · · · tSk with
k ≥ 2, there are unique maps

(4) H[S1]⊗ · · · ⊗H[Sk]
µS1,...,Sk−−−−−−→ H[I], H[I]

∆S1,...,Sk−−−−−−→ H[S1]⊗ · · · ⊗H[Sk]

obtained by respectively iterating the product maps µ or the coproduct maps ∆ in any meaningful
way. As mentioned when discussing the associativity axiom in Section 1.1.2, these maps are well-
defined; we refer to them as the higher products and coproducts of H.

For k = 1, we define µI and ∆I to be the identity map id : H[I] → H[I]. For k = 0, the only
set with a decomposition into 0 parts is the empty set, and in that case we let µ( ) : k −→ H[∅] and
∆( ) : H[∅] −→ k be the linear maps that send 1 to 1.

When H is the linearization of a Hopf monoid H in set species, we have higher (co)products

µS1,...,Sk(x1, . . . , xk) = x1 · . . . · xk ∈ H[I], ∆S1,...,Sk(z) = (z1, . . . , zk)

whenever xi ∈ H[Si] for i = 1, . . . , k, and z ∈ H[I], respectively. We refer to zi ∈ H[Si] as the i-th
minor of z corresponding to the decomposition I = S1t· · ·tSk; it is obtained from z by combining
restrictions and contractions in any meaningful way.
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1.1.8. The antipode and the antipode problem. A composition of a finite set I is a
decomposition I = S1 t · · · t Sk in which each subset Si is nonempty; we write

(S1, . . . , Sk) � I.

There is a unique composition of the empty set. It has no parts (k = 0).
If F = (S1, . . . , Sk), we write

µF = µS1,...,Sk and ∆F = ∆S1,...,Sk

for the higher (co)products (4). Each composite µF∆F maps H[I] to itself.
We let `(F ) = k denote the number of parts of F .

Definition 1.1.11. Let H be a (connected) Hopf monoid in vector species. The antipode of H
is the collection of maps

sI : H[I]→ H[I],

one for each finite set I, given by

(5) sI =
∑
F�I

(−1)`(F )µF∆F =
∑

(S1,...,Sk)�I
k≥0

(−1)kµS1,...,Sk∆S1,...,Sk

Note that s∅ = id and when I is nonempty, the sum effectively starts at k = 1. The right hand
side of (5) involves the higher (co)products of (4). Since a composition of I can have at most |I|
parts, the sum is finite. We refer to (5) as Takeuchi’s formula. For alternate formulas and axioms
defining the antipode of a Hopf monoid, see [2, Section 8.4].

Remark 1.1.12. In the general context of Remark 1.1.10, the antipode is part of the definition
of a Hopf monoid in a symmetric monoidal category. A Hopf monoid is a bimonoid H for which the
identity map is invertible in the convolution monoid Hom(H,H); its inverse is called the antipode.
For example, when a group is regarded as a Hopf monoid (in the category of sets), the antipode
is the function that sends each element of the group to its inverse. In the connected situation,
Takeuchi’s formula (5) automatically guarantees the existence of the antipode.

The antipode is a central part of the structure of a Hopf monoid, and the following is a funda-
mental problem.

Antipode Problem 1.1.13 ([2, Section 8.4.2]). Find an explicit, cancellation-free formula for
the antipode of a given Hopf monoid.

If H is the linearization of a Hopf monoid in set species H, the sum in (5) takes place in
the vector space H[I] with basis H[I]. The antipode problem asks for an understanding of the
coefficients of sI(h) for each basis element h in H[I].

Remark 1.1.14. The number of terms in Takeuchi’s formula (5) is the ordered Bell number
ω(n) ≈ n!/2(log 2)n+1; the first few terms in this sequence are 1, 1, 3, 13, 75, 541, 4683, 47293, 545835
[47]. Their rapid growth makes this equation impractical, even for moderate values of n. To solve
the Antipode Problem 1.1.13, one needs further insight into the Hopf monoid in question.

1.1.9. Properties of the antipode. The following properties of the antipode follow from
general results for Hopf monoids in monoidal categories. The first result states that the antipode
reverses products and coproducts.
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Proposition 1.1.15. Let H be a Hopf monoid and I = S t T a decomposition. Then

sI(x · y) = sT (y) · sS(x) whenever x ∈ H[S] and y ∈ H[T ],(6)

∆S,T

(
sI(z)

)
=
∑

sS(z/T )⊗ sT (z|T ) whenever z ∈ H[I].(7)

Proof. See [2, Proposition 1.22.(iii)]. �

More generally, let F = (S1, . . . , Sk) be a composition of I. Denote the reverse composition by
F = (Sk, . . . , S1). Let the switch map

swF : H[S1]⊗ · · · ⊗H[Sk]→ H[Sk]⊗ · · · ⊗H[S1]

reverse the tensor factors; that is,

swF (x1 ⊗ · · · ⊗ xk) = xk ⊗ · · · ⊗ x1

whenever xi ∈ H[Si] for 1 ≤ i ≤ k. Let

sF = sS1 ⊗ · · · ⊗ sSk : H[S1]⊗ · · · ⊗H[Sk]→ H[S1]⊗ · · · ⊗H[Sk].

Proposition 1.1.16. Let H be a Hopf monoid. For any composition F = (S1, . . . , Sk) of I,

(8) sI µF = µF swF sF , ∆F sI = sF swF ∆F

Proof. For k = 2, this is a restatement of Proposition 1.1.15. For k ≥ 2, this is the result of
iterating Proposition 1.1.15. �

Proposition 1.1.17. Let H be a Hopf monoid that is either commutative or cocommutative.
For any finite set I,

(9) s2
I = id.

If H is commutative, then H and its co-opposite Hcop share the same antipode.
If f : H→ K is a morphism of Hopf monoids, then

(10) fI sI = sI fI .

Proof. See [2, Propositions 1.16 and 1.22, Corollary 1.24]. �

Remark 1.1.18. A more general result than Propositions 1.1.15 and 1.1.16 is given in [5,
Lemma 12.12]. More general results than those in Proposition 1.1.17 are given in [5, Lemmas 12.2,
12.15, 12.17].

Example 1.1.19. Consider the Hopf monoid L of linear orders in vector species. Problem
1.1.13 asks for an explicit expression for sI(`), where ` is a linear order on a finite set I. Takeuchi’s
formula (5) yields a very large alternating sum of linear orders, but many cancellations take place.
It turns out that only one term survives:

sI(i1i2 . . . in) = (−1)n in . . . i2i1.

In other words, up to a sign, the antipode simply reverses the linear order.
Here is a simple proof. When I is a singleton, this follows readily from (5). When |I| ≥ 2,

Proposition 1.1.16 tells us that the antipode reverses products, which implies that sI(i1i2 . . . in) =
s{in}(in) · · · · · s{i1}(i1) = (−in) · · · (−i1) = (−1)n in . . . i2i1, as desired.
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For more complicated Hopf monoids, obtaining such an explicit description for the antipode is
often difficult. It requires understanding the cancellations that occur in a large alternating sum
indexed by combinatorial objects; the antipode problem is therefore of a clear combinatorial nature.

Several instances of the antipode problem are solved in [2, Chapters 11–12]. In Section 1.6 of
this monograph we offer a unified framework that solves this problem for many other Hopf monoids
of interest, as outlined in the table in the introduction. We describe a few consequences of these
formulas in Sections 2.4, 4.1, 4.3, and 5.7.

1.1.10. From Hopf monoids to Hopf algebras. Our results on Hopf monoids have coun-
terparts for Hopf algebras, thanks to the Fock functor1 K that takes Hopf monoids in species to
graded Hopf algebras. We only employ Hopf algebras briefly in this monograph, but we provide this
brief discussion for the benefit of the interested reader. See [2, Section 15.1.1] for further details.

First let us see how a connected Hopf monoid on set species H gives rise to a graded Hopf
algebra K(H). Let H[n] = H[{1, . . . , n}] for n ∈ N. Say h1, h2 ∈ H[n] are isomorphic if they are in
the same Sn-orbit; that is, if there exists a bijection σ : [n]→ [n] such that σ(h1) = h2. Let

K(H) :=
⊕
n≥0

Hn where Hn := span{isomorphism classes of elements of H[n]}

The operations of the Hopf algebra K(H) are induced from those of the Hopf monoid H by means
of the processes of shifting and standardization:

• The product of [h1] ∈ Hk1 and [h2] ∈ Hk2 is

[h1] · [h2] = [h1 · h+k1
2 ] ∈ Hk1+k2 ,

where h+k1
2 is the image of h2 under the order-preserving bijection from [k2] to {k1 +1, . . . , k1 +k2}.

• The coproduct of [h] ∈ Hn is

∆([h]) =
∑

[n]=StT

[std(h|S)]⊗ [std(h/S)] ∈
n⊕
k=0

Hk ⊗Hn−k,

where std(h|S) and std(h/S) are the images of h|S and h/S under the unique order preserving
bijections from S to [|S|] and from T to [|T |], respectively.

More generally, a connected Hopf monoid in vector species H gives rise to a graded Hopf algebra
K(H). The symmetric group Sn acts on H[n], and we define

K(H) :=
⊕
n≥0

Hn where Hn := H[n] / span{w · h− h | w ∈ Sn, h ∈ H[n]}.

The graded component Hn is known as the space of Sn-coinvariants of H[n].

A morphism of species commutes with the symmetric group actions and hence descends to
coinvariants. In this manner, K acts on morphisms.

Theorem 1.1.20 ([2, Proposition 3.50, Theorem 15.12]). If H is a Hopf monoid in species, then
K(H) is a graded Hopf algebra. Furthermore, if s is the antipode of H, then K(s) is the antipode
of K(H).

1In fact this is only one of four Fock functors; see [2, Sections 15.2, 17].
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Example 1.1.21. We invite the reader to verify that K(L) = k[x], the polynomial Hopf algebra
on one generator, with xn corresponding to the unique Sn-orbit on L[n]. We have

∆(xn) =

n∑
i=0

(
n

i

)
xi ⊗ xn−i and s(xn) = (−1)nxn.

Figure 1 shows antipode formulas for the Hopf algebras associated to some of the Hopf monoids
treated later in this work. They are to be compared with the formulas in Figure 1, from which these
formulas are derived. Isomorphic structures in H represent the same basis element in K(H), so
their coefficients in Figure 1 combine into one coefficient in Figure 1. According to Theorem 1.6.1,
the signs appearing in the former figure only depend on the dimension of the polytope modeling the
combinatorial structure. Hence, isomorphic structures occur with the same sign, and cancellations
do not take place in this passage. For other Hopf monoids not related to generalized permutahedra,
cancellations may occur.

Graphs K(G):

(( +  +  _s = _ + 2 3_

Matroids K(M):

(( + 5 + 2 8 _s = + _ + 2 

Posets K(P):

( ( + 2 +  + 2 4 _s = _

Partitions K(Π):

(( _  _  _  6 2  s +18  12  = 

Paths K(F):

(( + 6  s = _ _+ 3     21 +14

Figure 1. Antipode calculations in Hopf algebras

1.2. G,M,P,Π,F: Graphs, matroids, posets, set partitions, partitions into paths

In this section, we illustrate the previous definitions with five examples of Hopf monoids built
from combinatorial structures. Some of these and many others appear in [2, Chapter 13]. Important
ideas leading to these constructions are due to Joni and Rota [60], Schmitt [83], and many others;
additional references are given below.
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1.2.1. G: Graphs. A graph with vertex set I consists of a multiset of edges. Each edge is a
subset of I of cardinality 1 or 2; in the former case we call it a half-edge.

Let G[I] denote the set of all graphs with vertex set I. One may use a bijection σ : I → J
to relabel the vertices of a graph g ∈ G[I] and turn it into a graph G[σ](g) ∈ G[J ]. Thus, G is a
species, which we now turn into a Hopf monoid. Fix I and a decomposition I = S t T .
• The product of two graphs g1 ∈ G[S] and g2 ∈ G[T ] is the graph g1 ·g2 with vertex set I and edge
set the union of the edge sets of g1 and those of g2. Since the vertex sets of g1 and g2 are disjoint,
so are the edge sets. Thus, an edge of g1 · g2 is an edge of exactly one of g1 or g2.
• The coproduct of a graph g ∈ G[I] is ∆S,T (g) = (g|S , g/S) defined as follows. We let g|S ∈ G[S]
be the graph with vertex set S consisting of the edges and half-edges of g which are incident to S
only. The edges incident to T (on at least one vertex) are removed. By contrast, g/S ∈ G[T ] is
the graph with vertex set T consisting of all edges and half-edges of g incident to T on at least one
vertex: an edge {t, s} in g joining t ∈ T and s ∈ S becomes a half-edge at t in g/S .

An example follows. Let I = {a, b, c, x, y}, S = {x, y}, and T = {a, b, c}.

If g =

x
y

b c

a
then g|S =

x
y and g/S = b c

a

.

The Hopf monoid axioms are easily verified.
A simpler version of this Hopf monoid (disallowing half-edges) is discussed in [2, Section 13.2];

this in turn elaborates on work of Schmitt [83].

Example 1.2.1. Consider the antipode s for the linearization G of the Hopf monoid of graphs.
For a graph on 3 vertices, Takeuchi’s formula (5) returns an alternating sum of 13 graphs on the
same vertex set, corresponding to the 13 compositions of a 3-element set. An explicit calculation
yields

(( +  +  +  +  

_ _  _  _  

s
a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c

= _

Cancellations took place which resulted in a cancellation-free and combination-free sum of only 9
graphs. The antipode problem 1.1.13 for the Hopf monoid G asks for an understanding of this
phenomenon. This problem is solved in Section 3.2.

1.2.2. M: Matroids. Let I be a finite set. A matroid on ground set I is a nonempty collection
m of subsets of I which is closed under inclusion and satisfies the following axiom: if A and B are
in m and |A| = |B|+ 1, there exists a ∈ A−B such that B ∪ {a} is in m.

The sets in the collection are called independent ; the remaining subsets of I are called dependent.
The maximal independent sets are called bases. Matroids abstract the notion of independence, and
arise naturally in many fields of mathematics. Three key examples are the following.

(1) Linear matroids: If I is a set of vectors linearly spanning a vector space V , the collection
of subsets of I which are linearly independent is a matroid. The bases are the subsets of
I which are linear bases of V .
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(2) Graphical matroids: If I is the set of edges of a graph g, the collection of subsets of
I containing no cycles is a matroid. The bases are the subsets of I which constitute a
spanning forest of g.

(3) Algebraic matroids: If I is a set of elements which generate a field extension K of F, the
collection of subsets of I which are algebraically independent over F is a matroid. The
bases are the subsets of I which constitute a transcendence basis for K over F.

We review a number of basic operations on matroids; for more details on these and other notions
related to matroids, we refer the reader to [72, 99].

Consider a matroid m on I and a decomposition I = S t T . The restriction of m to S is the
matroid on ground set S defined as

m|S = {A ⊆ S | A ∈ m}.
The contraction of S from m is the matroid on ground set T defined as

m/S = {B ⊆ T | there is a basis A of m|S such that A ∪B ∈ m}.
Let m1 and m2 be matroids on ground set S and T , respectively, and I = S t T . Their direct

sum is the matroid on ground set I defined as

m1 ⊕m2 = {A1 ∪A2 | A1 ∈ m1, A2 ∈ m2}.
Let M[I] be the set of matroids on ground set I. Again, M is a species, which we now turn into

a Hopf monoid. Fix I, S and T as above.
• The product of m1 ∈ M[S] and m2 ∈ M[T ] is their direct sum m1 ⊕m2.
• The coproduct of m ∈ M[I] is ∆S,T (m) = (m|S ,m/S).

The Hopf monoid axioms boil down to familiar properties relating direct sums, restriction, and
contraction of matroids.

The (linearization M of the) Hopf monoid M is discussed in [2, Section 13.8]. The crucial idea
of assembling these matroid operations into an algebraic structure goes back to Joni and Rota [60,
Section XVII] and Schmitt [84, Section 15]. In fact the terms restriction, contraction, and minor,
which we employ for an arbitrary Hopf monoid in set species, originate in this example.

Example 1.2.2. We consider the antipode of the Hopf algebra K(M), where isomorphic ma-
troids are identified. Let m be the matroid on {a, b, c, d} whose bases are ab, ac, ad, bc, and bd.
Takeuchi’s formula (5) expresses the antipode s(m) as an alternating sum of 73 matroids, but after
extensive cancellation, one obtains:

(( + 5 + 2 8 _s = + _ + 2 

where we are representing isomorphism classes of matroids by affine diagrams [93]; points represent
elements and the following represent dependent sets: any four points, three points on a line, two
points above each other, and one hollow point. In particular, hollow points represent loops. The
antipode problem 1.1.13 for the Hopf monoid M asks for an understanding of this cancellation.
This problem is solved in Section 3.3.

1.2.3. P: Posets. A poset p on a finite set I is a relation p ⊆ I × I, denoted ≤, which is
reflexive, antisymmetric and transitive.

Let P[I] denote the set of all posets on I and P[I] its linearization; that is, the vector space
with basis P[I]. Then P is a set species and P is a vector species. We turn P into a Hopf monoid
in vector species as follows. Fix I = S t T .
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• The product of p1 ∈ P[S] and p2 ∈ P[T ] is the poset p1 · p2 on I which as a subset of I × I is
simply the (disjoint) union of the sets p1 ⊆ S × S and p2 ⊆ T × T . In p1 · p2 there are no relations
between elements of S and elements of T .
• The coproduct ∆S,T : P[I]→ P[S]⊗P[T ] is the linear map determined by

∆S,T (p) =

{
p|S ⊗ p|T if S is a lower set of p,

0 otherwise.

We say S is a lower set or order ideal of p if no element of T is less than an element of S, and we
let

p|S = p ∩ (S × S)

be the induced poset on S.
The Hopf monoid axioms are easily verified.
The Hopf monoid P is commutative but not cocommutative. It is discussed in [2, Section 13.1].

Work of Malvenuto [69] and of Schmitt [84, Section 16] is at the root of this construction. Work
of Gessel [45] is also relevant.

Warning. The vector species P is the linearization of the set species P, so each space P[I]
carries the canonical basis P[I]. Note, however, that ∆S,T : P[I] → P[S] ⊗ P[T ] does not always
send a basis element in P[I] to a basis element in P[S] × P[T ]. In other words, the Hopf monoid
structure on P is not the linearization of a Hopf monoid structure on P.

Example 1.2.3. We consider the antipode of the Hopf algebra of posets K(P), where isomorphic
posets are identified, and represent isomorphism classes by means of unlabeled Hasse diagrams.
For the class shown below (of a poset on four elements), Takeuchi’s alternating sum of 73 posets
simplifies to:

( ( + 2 +  + 2 4 _s = _

The antipode problem 1.1.13 for posets is solved in Section 3.4.

1.2.4. Π: Set partitions. A partition π of a finite set I is a covering of I by nonempty and

pairwise disjoint subsets:
⊔
B∈π

B = I. The sets B ∈ π are called the parts or blocks of π.

Neither the blocks nor the elements within each block come in any specified order. To display
a set partition we arrange the blocks and the elements within each block in an arbitrary order. For
instance, {ab, cde} denotes the partition π = {B,C} with blocks B = {a, b} and C = {c, d, e}.

Let Π[I] denote the set of all set partitions on I. Then Π is a set species. We turn it into a
Hopf monoid. Let I = S t T be a decomposition.
• The product π · ρ ∈ Π[I] of π ∈ Π[S] and ρ ∈ Π[T ] is the union of the two collections. Thus, a
block of π · ρ is either a block of π or of ρ.
• The coproduct of π ∈ Π[I] is ∆S,T (π) = (π|S , π|T ) where π|S is the collection of nonempty
intersections B ∩ S for B ∈ π.

For example, if I = {a, b, c, d, e}, S = {a, b, d}, T = {c, e} and

π = {ab, cde} then π|S = {ab, d} and π/S = π|T = {ce}.
The Hopf monoid axioms are easily verified. The Hopf monoid Π is both commutative and

cocommutative. The associated Hopf algebra K(Π) is the classical Hopf algebra of symmetric
functions. See [2, Sections 12.6 and 17.4] and [3, Section 9.3].
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Example 1.2.4. For the antipode s({ab, cde}), Takeuchi’s formula (5) returns an alternating
sum of 530 set partitions, which simplifies as shown below.

(( _  _  _  

_  

_  2 2  2  2  s

d
e

b a

c

+ 6 + 4  + 4   12  + 4  

= 

d
e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c

d
e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c
d

e

b a

c

Here we represent a partition of I by a graph on I whose edges are the pairs of elements in the
same block. This graph is a union of complete graphs, one for each block of the partition.

The antipode of Π is fully described in [2, Theorem 12.47]. The result is rederived here in
Section 5.6. In Section 2.4 we apply this result to the calculation of the multiplicative inverse of a
formal power series.

1.2.5. F: Paths and partitions into paths. Let I be a finite set. A path on I is an
equivalence class of linear orders on I under reversal. For example, the linear orders abc and cba
represent the same path p on {a, b, c}.

A partition of I into paths is a partition of the set I together with a path pB on each block
B of the partition. We display partitions into paths in the same manner as set partitions, but
the elements within each block B are now listed by employing one of the two linear orders that
represent the path pB. For example, {ac, bde}, {ca, bde}, {ac, edb}, and {ca, edb} all represent the
same partition into paths.

Let C[I] denote the set of paths on I and F[I] denote the set of partitions of I into paths. They
define set species C and F.

Let I = S t T be a decomposition. Given a path p ∈ C[I], we define a path p|S ∈ C[S] by
erasing the elements of T from p and splicing the resulting pieces together into one path, so that
elements of S that bound a run of consecutive elements of T in p become consecutive in p|S . We
also define a partition into paths p/S ∈ F[T ] by simply erasing the elements of S from p, so that
the path p breaks into the partition of T whose paths are the maximal runs of elements of T in p.
For example, if I = {a, b, c, d, e, f}, S = {b, c, f}, T = {a, d, e}, and

p = abcdef, then p|S = bcf and p/S = {a, de}.

Both operations extend to partitions α into paths, by applying them to each path p in α. Thus, if
α ∈ F[I], we obtain two partitions α|S ∈ F[S] and α/S ∈ F[T ].

We employ these constructions to turn the species F into a Hopf monoid.
• The product α · β ∈ F[I] of α ∈ F[S] and β ∈ F[T ] is the union of the two collections of paths.
Thus, a path of α · β is either a path of α or of β.
• The coproduct of α ∈ F[I] is ∆S,T (α) = (α|S , α/S) defined as above.

The Hopf monoid axioms are easily verified.
We may embed C[I] into F[I] by viewing each path as a partition into a single path. In this

manner, the commutative monoid F is freely generated by the species C.

Example 1.2.5. Consider the single path abcd ∈ F[{a, b, c, d}]. For the antipode s(abcd),
Takeuchi’s formula (5) returns an alternating sum of 73 partitions into paths which simplifies as
shown below.
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(( + 2  +  +  +  2  s
a b c d

= _

_

a b c d
a b c

d

a b d

c

a c d

b

b c d

a
+ 2  a b

c d
   +   

   5  a b

c d

_   5  b c

a d

_   5  c d

a b

_   2  a c

b d

_   2  b d

a c

_   2  a d

b c
 +14  a b

c d

a d

b c

Here paths are represented by graphs, so that each pair of consecutive elements are joined by an
edge.

In Section 5.7 we solve the antipode problem 1.1.13 for F. In particular, we explain why every
coefficient in this formula is a Catalan number, and the number of terms is also a Catalan number.
We will also discuss how F is closely related to the associahedron, the Faà di Bruno Hopf algebra,
and the calculation the compositional inverse of a formal power series.

1.3. Generalized permutahedra

The permutahedron is a ubiquitous polytope. Its vertices are in bijection with the set of per-
mutations of a finite set. We are interested in its deformations, known as generalized permutahedra.
This family of polytopes is special enough to welcome combinatorial analysis, and general enough
to model many combinatorial families of interest. It is also precisely the family of polytopes which
are amenable to the algebraic techniques of this monograph, as Section 1.5 will show.

We now recall some basic facts about permutahedra and their deformations. These results and
other background on polyhedra may be found in [36, 41, 77, 86, 97, 102].

1.3.1. Normal fans of polyhedra. Let V be a Euclidean space. Thus, V is a finite dimen-
sional real vector space endowed with an inner product 〈−,−〉.

Let p be a polytope (bounded polyhedron) in V and v ∈ V a vector. We refer to the set

pv = {p ∈ p | 〈p, v〉 ≥ 〈q, v〉 for all q ∈ p}
as the v-maximum face of p. The set pv is then a face of p, the functional 〈−, v〉 is constant on it,
and greater than on the rest of p. In other words, the face pv is the locus of p where the functional
〈−, v〉 achieves its maximum.

Figure 2. a) A generalized permutahedron p. b) Two directions v and w and the
corresponding maximal faces pv and pw.

The face pv only depends on the direction of v: dilating v by a positive scalar results on the same
face. If we intersect p with affine hyperplanes orthogonal to v, pv is the last nonempty intersection
we encounter as we travel outward in the direction of v.

The same definition applies more generally when p is a (possibly unbounded) polyhedron. In
this case, the functional 〈−, v〉 may not achieve a maximum on it; equivalently, the set pv may be
empty.
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We define the (open and closed) normal cones of a face q of a polyhedron p by

N ◦p (q) = {v ∈ V | pv = q},
Np(q) = {v ∈ V | q is a face of pv},

respectively. They are polyhedral cones (open and closed, respectively), Np(q) is the closure of
N ◦p (q), dimNp(q) = dimV − dim q, and q1 is a face of q2 if and only if Np(q2) is a face of Np(q1).

The normal fan Np of p ⊆ V consists of the normal cones Np(q) for all faces q of p. Its support
is the cone of directions with respect to which p is bounded above. In particular, it is a convex
subset of V . If p is a polytope, the support is the whole of V , and the fan Np is complete.

Two polyhedra p and p′ in V are normally equivalent if they have the same normal fan:

p ≡ p′ ⇐⇒ Np = Np′ ;

that is, if Np and Np′ consist of exactly the same cones. A polyhedron is normally equivalent to
any of its translates or nonzero dilations.

We say a polyhedron q is a deformation of a polyhedron p if the normal fan Nq is a coarsening
of the normal fan Np; that is, every cone of Np is a subset of a cone of Nq. We say q is an extended
deformation of p if the normal fan Nq is a coarsening of a convex subfan of the normal fan Np.

When p is a simple polytope, it is shown in [76, Theorem 15.3] that we may think of the
deformations of p equivalently as being obtained by any of the following three procedures:
• moving the vertices of p while preserving the direction of each edge, or
• changing the edge lengths of p while preserving the direction of each edge, or
• moving the facets of p while preserving their directions, without allowing a facet to move past

a vertex.
The Minkowski sum of polyhedra p and q in V is

p + q = {p+ q | p ∈ p, q ∈ q} ⊆ V.
The normal fan Np+q is the coarsest common refinement of the normal fans Np and Nq. Its cones
are the nonempty intersections between cones in Np and cones in Nq.

A zonotope is a Minkowski sum Z(A) =
∑

a∈A a of a finite set of segments A. The deformations
of zonotopes can be described more simply as follows.

Proposition 1.3.1. [8, Prop. 2.6] Let A be a finite set of vectors in a vector space V and
Z(A) the corresponding zonotope. A polytope is a deformation of the zonotope Z(A) if and only
if every edge is parallel to some vector in A. More generally, a polyhedron P in V is an extended
deformation of Z(A) if and only if every face affinely spans a parallel translate of span(S) for some
S ⊆ A.

1.3.2. Lemmas from polyhedral geometry. For proofs of the results collected here we
refer to [102, Chapter 7].

Let V and W be Euclidean spaces and endow V ×W with the inner product

〈(v, w), (v′, w′)〉 = 〈v, v′〉+ 〈w,w′〉.
Given polyhedra p ⊆ V and q ⊆W , let p×q ⊆ V ×W be their Cartesian product. Maximum faces
of a product are products of maximum faces, as follows.

Lemma 1.3.2. Let p and q be polytopes in V and W , respectively. Let v ∈ V and w ∈W . Then

(11) (p× q)(v,w) = pv × qw.

In particular,

(12) (p× q)(v,0) = pv × q and (p× q)(0,w) = p× qw.
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Lemma 1.3.2 holds as well for polyhedra, assuming that v and w lie in the support of Np and
Nq, respectively. This is equivalent to assuming that (v, w) lies in the support of Np×q.

The following describes the result of computing maximum faces iteratively.

Lemma 1.3.3. Let p be a polytope in V . Let v1 and v2 ∈ V . There exist λ1, λ2 > 0 such that

(13) (pv1)v2 = pλ1v1+λ2v2 .

In fact, there exists r > 0 such that (13) holds for all λ1, λ2 > 0 with λ1/λ2 > r.

We abbreviate the above conditions on λ1 and λ2 by writing λ1 >> λ2 > 0.
Lemma 1.3.3 holds as well for polyhedra, assuming that v1 and v2 lie in the support of Np,

which implies that λ1v1 + λ2v2 also does.

The following is a consequence of Lemma 1.3.2.

Lemma 1.3.4. We have

(14) Np×q = Np ×Nq.

More precisely, the faces of p× q are products of faces p1 of p and q1 of q, and

Np×q(p1 × q1) = Np(p1)×Nq(q1),

so that the cones in the normal fan of the product p× q identify with pairs of cones in the normal
fans of p and q.

Lemma 1.3.5. Let p, p′ be polyhedra in V and q, q′ be polyhedra in W . Then

(15) p ≡ p′ and q ≡ q′ ⇐⇒ p× q ≡ p′ × q′.

This follows from (14).

Lemma 1.3.6. Let p ≡ p′ be normally equivalent polyhedra in V . Let v be a vector in the support
of Np = Np′. Then

(16) pv ≡ p′v.

1.3.3. Standard Euclidean spaces. Let I be a finite set I and RI the real vector space
whose vectors are I-tuples of real numbers:

RI = {(ai)i∈I | ai ∈ R}.
Let {ei | i ∈ I} be the standard basis of RI . For any subset S of I, let

eS =
∑
i∈S

ei.

We endow RI with the standard inner product

〈x, y〉 =
∑
i∈I

xiyi.

The standard basis {ei}i∈I is then orthonormal, and for all x ∈ RI ,

〈x, eS〉 =
∑
i∈S

xi.

Let I = S t T a decomposition. Then

RS × RT = RI

as Euclidean spaces. Indeed, the coordinates of a vector x ∈ RI split into a pair (y, z) where the
coordinates of y are indexed by S and those of z by T .
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1.3.4. Standard permutahedra. Let I be a nonempty finite set and n = |I|. The standard
permutahedron πI is the convex hull of the points in RI whose coordinates consist precisely of the
elements 1, . . . , n, listed in any order:

πI = conv { (ai)i∈I | {ai}i∈I = [n] } ⊆ RI .

It is a convex polytope of dimension n − 1. We let πn = π[n] denote the standard permutahedron
in Rn.

For example, π{a,b,c} is a regular hexagon lying on the plane xa + xb + xc = 6, while π{a,b,c,d} is

a truncated octahedron on the hyperplane xa + xb + xc + xd = 10 in R{a,b,c,d}. These polytopes are
shown below, in each case next to the standard simplex in RI .

b

a c (3,1,2)

(3,2,1) (1,2,3)

(1,3,2)(2,3,1)

(2,1,3)

a

b

d

c

The permutahedron πI may also be described as the set of solutions (xi)i∈I ∈ RI to the following
system of (in)equalities: ∑

i∈I
xi =

(
n+ 1

2

)
,(17)

∑
i∈S

xi ≤
(
n+ 1

2

)
−
(
t+ 1

2

)
,(18)

for all compositions (S, T ) of I, where t = |T | = n− |S|.
The facial structure of the permutahedron admits a simple description.

• (Dimension 0.) The vertices of πI are in bijection with the linear orders on I. The vertex
corresponding to the order ` has i coordinate equal to the position of i in the reversal of `. For
example, the linear order abc corresponds to the vertex in the hexagon with coordinates xa = 3,
xb = 2, xc = 1. More plainly, the vertices of πn are the n! permutations of (1, 2, . . . , n).
• (Dimension 1.) There is an edge between two vertices x and y if and only if their coordinates
can be obtained from each other by swapping two consecutive values. Thus xi = r and xj = r + 1
become yi = r + 1 and yj = r for some i and j in I, r in [n], while yk = xk for k 6= i, j. The edge
joining x and y is then a parallel translate of the vector ei − ej .
• (Dimension n − 2.) The 2n − 2 facets of πI are in bijection with the compositions of I into 2
parts. The facet corresponding to (T, S) is obtained by turning (18) into an equality, and keeping
the remaining (in)equalities.
• (Arbitrary dimension.) The (n−k)-dimensional faces of πI are in bijection with the compositions
of I into k parts. For each composition F = (S1, . . . , Sk) � I, the corresponding face πF has
as vertices the permutations x ∈ RI such that the coordinates {xi | i ∈ S1} are the largest |S1|
numbers in [n], the coordinates {xi | i ∈ S2} are the next largest |S2| numbers in [n], and so on.
This description shows that the face πF is a parallel translate of the product of permutahedra
πS1 × · · · × πSk in RS1 × · · · × RSk = RI .
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• (Face containment.) Given compositions F = (S1, . . . , Sk) and G = (T1, . . . , Tl), we say that F
refines G if each Ti is a union of consecutive Sj ’s. It follows from the preceding discussion that πF
is contained in πG if and only if F refines G.

There is another convenient representation of the permutahedron. If we let ∆ij be the segment
connecting ei and ej in RI , then we can represent the standard permutahedron as the zonotope

(19) πI =
∑
i 6=j∈I

∆ij + eI .

Note that the summand eI simply affords a translation by the vector (1, . . . , 1).

1.3.5. The braid arrangement. The braid arrangement BI consists of the
(
n
2

)
hyperplanes

in RI with equations

yi = yj , i, j ∈ I, i 6= j.

If n = 1, the arrangement is empty.
The faces of the braid arrangement are in bijection with compositions of I, with F = (S1, . . . , Sk)

labeling the face defined by the inequalities

yi = yj if i, j ∈ Sa and yi ≥ yj if i ∈ Sa, j ∈ Sb, a < b.

The vectors y lying in the relative interior of this face of BI are precisely those for which the
y-maximum face of the standard permutahedron πI is πF .

In other words, the faces of the braid arrangement BI are precisely the cones NπI (πF ) in the
normal fan of the permutahedron πI . We call this fan the braid fan.

The vector eI = (1, . . . , 1) is orthogonal to πI and the line it spans is the lineality space of the
braid fan NπI (the minimum cone in the fan). Two vectors congruent modulo eI lie in the same
cone of the fan.

Assume S and T are proper and nonempty. Then the vector eS lies in the open face of BI
labeled by the composition (S, T ). More generally, for F as above and any positive scalars λi, the
vector

(20) λ1eS1 + λ2eS1tS2 + · · ·+ λkeS1t···tSk

lies in the open face labeled by F . Among these there is the vector

(21) eF = eS1 + eS1tS2 + · · ·+ eS1t···tSk

Note that eS,T = eS + eI and

(22) eRtS,T + eR,StT ≡ eR,S,T mod eI .

1.3.6. Generalized permutahedra. Recall that a fan G coarsens another fan F (or F refines
G) if every cone of F is contained in a cone of G or, equivalently, if every cone of G is a union of
cones of F . We are now ready to define our main object of study.

Definition 1.3.7. A generalized permutahedron on I is a deformation of the permutahedron
πI ; that is, a polytope p ⊆ RI whose normal fan Np coarsens the braid fan NπI .
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Let p be a generalized permutahedron in RI . To a composition F of I, one may attach a face
of p, as follows. Recall that F determines a face πF of πI . By assumption, the open cone N ◦πI (πF )
is contained in a unique open cone of the form N ◦p (q), where q is a face of p. We denote this face
q by pF . Thus,

N ◦p (q) =
⊔

F : pF=q

N ◦πI (πF ).

Equivalently, pF is the y-maximum face of p for any y lying in the open face of BI labeled by F .
In particular,

(23) pF = peF ,

where eF is as in (21) Every face of p arises in this manner, in general for several compositions F .
We wish to consider more general (unbounded) polyhedra. For this we allow the support of the

normal fan to be smaller than the ambient space RI .

Definition 1.3.8. An extended generalized permutahedron on I is an extended deformation of
the permutahedron πI ; that is, a polytope p ⊆ RI whose normal fan Np coarsens a subfan of the
braid fan NπI .

The support of such a subfan coincides with the support of Np, and hence must be convex (in
fact, a cone).

Since the permutahedron is a simple polytope, a generalized permutahedron is obtained from it
by shifting the facets while preserving their directions, without letting a facet go past a vertex. To
deform a permutahedron into an extended generalized permutahedron, vertices can be moved off to
infinity, and facet hyperplanes can be erased. The figure below shows the standard permutahedron
in R4 and four of its deformations.

Since the permutahedron πI is a parallel translate of the zonotope of the root system AI =
{ei − ej : i, j ∈ I}, the following is a special case of Proposition 1.3.1.
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Corollary 1.3.9. A polytope p is a generalized permutahedron if and only if every edge is
parallel to a vector of the form ei − ej for i, j ∈ I. More generally, a polyhedron p in RI is an
extended generalized permutahedron if and only if every face affinely spans a parallel translate of
span(S) for some S ⊆ AI = {ei − ej : i, j ∈ I}.

Remark 1.3.10. Generalized permutahedra were introduced by Postnikov in [77], but have
emerged in various forms and guises in the work of many authors.

Up to translation, generalized permutahedra are equivalent to base polytopes of polymatroids,
which were defined earlier by Edmonds [36]; see Section 3.1.3. Generalized permutahedra are also
equivalent to submodular functions [36, 41, 71, 86]; we discuss this further in Section 3.1. We
have extended these definitions to allow for unbounded polyhedra; similar generalizations were
considered by Fujishige [41] and Derksen and Fink [32].

Complete fans coarsening NπI appear in [76] as complete fans of posets and in [71] as convex
rank tests. Not every such coarsening is the normal fan of a polytope. When it is, the polytope
is (by Definition 1.3.7) a generalized permutahedron. Those polytopal fans are the submodular
rank tests of [71]. It is shown in [71, Theorem 9] that convex rank tests are in bijection with
semigraphoids, a concept arising in nonparametric statistics [30, 73, 96].

1.4. GP: The Hopf monoid of generalized permutahedra

We turn the collection of generalized permutahedra into a Hopf monoid in set species. We
focus on polytopes initially, and treat the unbounded case (extended generalized permutahedra) in
Section 1.4.5.

1.4.1. Cartesian product, restriction, and contraction. We introduce suitable opera-
tions on generalized permutahedra. Let I be a finite set and I = S t T a decomposition. Recall
that

RS × RT = RI .

Assume that S and T are proper and nonempty.

Proposition 1.4.1. If p ⊆ RS and q ⊆ RT are generalized permutahedra, then p× q ⊆ RI is a
generalized permutahedron.

Proof. By assumption, NπS and NπT refine Np and Nq, respectively. Employing (14) we
deduce that NπS×πT = NπS × NπT refines Np × Nq = Np×q. In turn, the braid fan NπI , which is
cut out by the hyperplanes xi = xj for i, j ∈ I, refines the product NπS ×NπT of the braid fans in
RS and RT , which is cut out by the hyperplanes xi = xj for i, j ∈ S or i, j ∈ T . It follows that NπI
refines Np×q. �

Let F = (S, T ). This is a composition of I. Given a generalized permutahedron p ⊆ RI , the
face pF of p is defined (Section 1.3.6). It is the eS-maximum face of p, and more generally the
y-maximum face for any y lying in the open face of BI labeled by F .

Proposition 1.4.2. There exist generalized permutahedra p|S ⊆ RS and p/S ⊆ RT such that

(24) pS,T = p|S × p/S .

Proof. This result appears in [41, Theorem 3.15]. It may be also derived from the proof of
Theorem 3.1.3. �
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We call p|S the restriction of p to S and p/S the contraction of S from p.
The figure below shows a generalized permutahedron p ⊆ Rabcd and its faces

pabd,c = p|abd × p/abd ⊆ Rabd × Rc and pad,bc = p|ad × p/ad ⊆ Rad × Rbc.

= X

= X

a

b

d

c

1.4.2. The Hopf monoid GP of generalized permutahedra. For each finite set I, let
GP[I] denote the set of generalized permutahedra on I. We agree that GP[∅] consists of a single

polytope, the only polytope (the origin) in the 0-dimensional space R∅. A bijection σ : I → J
induces a linear isomorphism

(25) RI → RJ , x 7→ y

where yj = xσ−1(j) for each j ∈ J . This sends πI and its faces bijectively onto πJ and its faces.
Therefore, it sends a generalized permutahedron on I to another on J .

In this manner, GP is a connected set species. We turn it into a Hopf monoid as follows. Let
(S, T ) be a composition of I.
• The product of p ∈ GP[S] and q ∈ GP[T ] is

p · q := p× q ∈ GP[I].

• The coproduct of p ∈ GP[I] is
∆S,T (p) = (p|S , p/S),

where the restriction p|S ∈ GP[S] and contraction p/S ∈ GP[T ] are defined in Proposition 1.4.2.

Theorem 1.4.3. These operations turn the set species GP into a (connected) Hopf monoid.

Proof. We verify two of the axioms; the others are straightforward.

Coassociativity. Let p ⊆ RI be a generalized permutahedron. We need to show that for any
decomposition I = R t S t T ,

(p|RtS)|R = p|R, (p|RtS)/R = (p/R)|S , p/RtS = (p/R)/S .

We may assume R, S and T are nonempty. We employ (12) and (24) to calculate

(pRtS,T )R,StT = (p|RtS × p/RtS)R,StT = (p|RtS)R,S × p/RtS = (p|RtS)|R × (p|RtS)/R × p/RtS ,

(pR,StT )RtS,T = (p|R × p/R)RtS,T = p|R × (p/R)S,T = p|R × (p/R)|S × (p/R)/S .

Thus, it suffices to prove the equality of the polytopes (pRtS,T )R,StT and (pR,StT )RtS,T . For this,
we employ (13) and (20) to find that for λ >> µ > 0 and λ′ >> µ′ > 0,

(pRtS,T )R,StT = (peRtS )eR = pλeRtS+µeR = pR,S,T ,

(pR,StT )RtS,T = (peR)eRtS = pλ′eR+µ′eRtS = pR,S,T .
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The last equations in each step above follow from the fact that λeRtS + µeR and λ′eR + µ′eRtS lie
in the open face of the braid fan labeled by the composition (R,S, T ).

Compatibility. Fix decompositions S t T = I = S′ t T ′ and let A,B,C,D be the pairwise in-
tersections, as in (3). Let p ⊆ RS and q ⊆ RT be generalized permutahedra. We need to verify
that

(p× q)|S′ = p|A × q|C and (p× q)/S′ = p/A × q/C .

If any of A,B,C,D is empty, these hold trivially. Assume they are not. We calculate employing
(12) and (24), noting that eS′ = eA + eC :

(p× q)|S′ × (p× q)/S′ = (p× q)eS′ = peA × qeC = p|A×p/A× q|C × q/C = (p|A× q|C)× (p/A× q/C).

The desired equalities follow. �

The Hopf monoid p is commutative but not cocommutative.
Having verified (co)associativity, we are now able to describe higher (co)products in GP in

geometric terms. Recall from (21) that if F = (S1, . . . , Sk) then eF = eS1 +eS1tS2 + · · ·+eS1t···tSk ,
where eS is the indicator vector of S in RE for S ⊆ E.

Proposition 1.4.4. Let F = (S1, . . . , Sk) be a composition of I. In the Hopf monoid GP, the
higher product and coproduct associated to F are as follows:
• For generalized permutahedra p1 . . . , pk in RS1 , . . . ,RSk , µF (p1, . . . , pk) = p1 · . . . · pk.
• For a generalized permutahedron p in RI , ∆F (p) = (p1, . . . , pk) where p1, . . . , pk are the generalized
permutahedra in RS1 , . . . ,RSk , respectively, such that the eF -maximal face of p is pF = p1 · . . . · pk.

Consequently, we have

(26) µF∆F (p) = pF .

Proof. The expression for the higher product follows readily by associativity. We prove the
expression for the higher coproduct by induction on the number of parts of F , recalling from (21)
and (23) that pF = peF . When F has one part, eF is orthogonal to p, so pF = p and the result
holds. When F has two or more parts, let S be the first part, T the union of the remaining
parts, and G the composition of T consisting of those parts. By the induction hypothesis we
have ∆G(p/S) = (p2, . . . , pk) for the generalized permutahedra p2, . . . , pk in RS2 , . . . ,RSk such that
(p/S)G = p2 · . . . · pk. Now, eF = keS + eG lies in the same open face of the braid fan as λeS + µeG
when λ, µ > 0. In light of Lemma 1.3.3 and (12), whenever λ >> µ > 0 we have

pF = pλeS+µeG = (peS )eG = (p|S × p/S)eG = p|S × (p/S)eG = p1 · p2 · . . . · pk

where p1 = p|S ∈ GP[S]. By coassociativity,

∆F (p) = (id,∆G)∆S,T (p) = (id,∆G)(p|S , p/S) = (p1, p2, . . . , pk)

as desired.
The descriptions of µF and ∆F imply that µF∆F (p) = pF . �

Remark 1.4.5. In the language of polymatroids and submodular functions, equivalent defi-
nitions of restriction and contraction were given by Edmonds in [36]. A similar Hopf algebraic
structure on polymatroids was defined independently by Derksen and Fink [32] at about the same
time that our results were announced. In our work we emphasize the polytopal perspective, which
allows us to obtain many new results.
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1.4.3. Normal equivalence: the Hopf monoid GP. Let GP[I] denote the quotient of the
set GP[I] in which normally equivalent generalized permutahedra in RI are identified. This defines
a quotient species GP of GP.

Proposition 1.4.6. The Hopf monoid structure of GP descends to GP.

Proof. The product descends to the quotient in view of (15). For the coproduct, consider two
normally equivalent generalized permutahedra p ≡ p′ in RI and let (S, T ) be a composition of I.
It suffices to show that pS,T ≡ p′S,T , again by (15). This follows from (16) applied to the vector
eS . �

We obtain a quotient Hopf monoid

GP � GP.

The elements of GP[I] are in one-to-one correspondence with polytopal coarsenings of the normal
fan of πI (coarser fans which arise as normal fans of a polytope in RI). There is a finite number
of such coarsenings. It follows from the discussion in [71, Section 4] that for |I| = 1, 2, 3, 4 there
are 1, 2, 22, 22108 elements in GP[I]. Figure 3 shows the 22 classes for |I| = 3, together with the
corresponding fans.

Figure 3. The pantheon of generalized permutahedra on {a, b, c}.
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One may also define an intermediate quotient Hopf monoid in which generalized permutahedra
are identified only up to translations and dilations.

1.4.4. Central symmetry. Given a polyhedron p, its opposite is

p = {−x | x ∈ p}.
We call p centrally symmetric if p = p.

For any face q of p, we have

(27) Np(q) = Np(q).

A fan is centrally symmetric if for each cone in the fan, the opposite cone belongs to the fan.
It follows from (27) that if p is centrally symmetric, so is its normal fan. Hence the same is true if
p is normally equivalent to its opposite.

The standard permutahedron πI is normally equivalent to its opposite, since its translate to
the origin (by means of −

(
n+1

2

)
eI) is centrally symmetric. It follows that the fan NπI is centrally

symmetric, and then that if p is a generalized permutahedron in RI , so is p. We obtain a bijective
map

GP[I]→ GP[I], p 7→ p,

and then an isomorphism of species GP→ GP.

Proposition 1.4.7. The above map is an isomorphism of Hopf monoids GPcop → GP.

Proof. The product is preserved since p× q = p× q. To verify that the coproduct is reversed,
pick a generalized permutahedron p in RI and a composition (S, T ) of I. Note that

eT = eS + eI .

We calculate using (24):

p|S × p/S = peS = peS = peT = p|T × p/T .

The third equality holds since eI is orthogonal to p. This says that ∆S,T (p) = ∆T,S(p). �

The map p 7→ p is well-defined on classes under normal equivalence by (27), so it descends to
the quotient yielding an isomorphism of Hopf monoids GP

cop → GP.

1.4.5. The Hopf monoid GP+ of extended generalized permutahedra. For each finite
set I, let GP+[I] be the set of extended generalized permutahedra on I. Then GP+ is a set
species in the same manner as GP is. Let GP+ denote its linearization. We proceed to turn the
latter into a Hopf monoid in vector species: certain components of the coproduct are not defined
set-theoretically. Let (S, T ) be a composition of I.
• The product of p ∈ GP+[S] and q ∈ GP+[T ] is

p · q := p× q ∈ GP+[I].

This operation is set theoretic, and extends linearly to µS,T : GP+[S]⊗GP+[T ]→ GP+[I].
• The coproduct is defined on a basis element p ∈ GP[I] by

∆S,T (p) =

{
p|S ⊗ p/S if eS lies in the support of Np,

0 otherwise,

and extended linearly to ∆S,T : GP+[I]→ GP+[S]⊗GP+[T ]. This operation is not set theoretic.
Propositions 1.4.1 and 1.4.2 hold for extended generalized permutahedra (the latter in the case

that eS lies in the support of the normal fan). This makes the above operations well-defined.
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Proposition 1.4.4 holds in the following form:

(28) µF∆F (p) =

{
pF if F lies in the support of Np,

0 otherwise.

Theorem 1.4.8. These operations turn the vector species GP+ into a (connected) Hopf monoid.

Proof. We verify coassociativity. Let (R,S, T ) be a composition of I. The key fact is this:

eR,StT and eRtS,T lie in the support of Np ⇐⇒ eR,S,T does.

The forward implication holds by (22) and the comments following Lemma 1.3.3. To show the
backward implication, recall that the fan Np refines a subfan Σ of NπI . Since eR,S,T is interior to
the cone of the braid fan spanned by eR,StT and eRtS,T , if that subfan Σ contains eR,S,T , it must
contain the generating rays eR,StT and eRtS,T .

This fact guarantees that if one encounters 0 in calculating (id×∆S,T )∆R,StT (p), then one also
encounters 0 in calculating (∆R,S× id)∆RtS,T (p). When 0 is not encountered, coassociativity holds
by the same argument as in Theorem 1.4.3. The compatibility axiom requires a similar check. �

The Hopf monoid GP+ contains GP as a Hopf submonoid.

Repeating the construction of Section 1.4.3, we let GP+ denote the Hopf monoid of extended
generalized permutahedra modulo normal equivalence. We obtain the commutative diagram of
Hopf monoids below.

GP

����

� � // GP+

����

GP �
�
// GP+

1.5. Maximality of GP

In Section 1.4 we endowed the family of generalized permutahedra with the structure of a Hopf
monoid in set species. The operations capture natural geometric features of this family of polytopes.
One may wonder if other families of polytopes may lend themselves to the same treatment. We
show here that this is not the case: generalized permutahedra constitute the largest such family.

Suppose P is a connected Hopf monoid in set species such that for every finite set I and
composition (S, T ) of I, the following properties hold.
• The elements of P[I] are polytopes in RI .
• The action of a bijection I → J on polytopes is induced from the map RI → RJ in (25).
• The product µS,T (p, q) ∈ P[I] of two polytopes p ∈ P[S] and q ∈ P[T ] is their cartesian product

p× q ⊆ RS × RT = RI .
• If we write the coproduct of p ∈ P[I] as

∆S,T (p) = (p|S , p/S) ∈ P[S]× P[T ],

then the polytope p|S × p/S ⊆ RS × RT = RI is the maximum face of p in the direction of eS .

Theorem 1.5.1. Suppose P is as above. Then every polytope in P[I] is a generalized permuta-
hedron on I, and P is a Hopf submonoid of GP.

Proof. Connectedness means that P[∅] consists of a single polytope, the only polytope (the

origin) in the 0-dimensional space R∅. Denote it 1.
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First notice that for any polytope p ∈ P[I] we have, by counitality for P,

peI = p|I × p/I = p× 1 = p.

It follows that 〈−, eI〉 is constant on p. Therefore p is not full-dimensional, and the direction eI is
in the lineality space of its normal fan Np. In other words, eI belongs to every cone in Np.

Write pS,T = p|S × p/S when (S, T ) is a composition of I. As in the proof of Theorem 1.4.3,
coassociativity for P implies that

(pRtS,T )R,StT = (pR,StT )RtS,T

when (R,S, T ) is a composition of I. Let us denote this polytope pR,S,T . Then by (13) we have

pR,S,T = pλeRtS+µeR = pλ′eR+µ′eRtS

for λ >> µ > 0 and λ′ >> µ′ > 0. It follows that λeRtS + µeR and λ′eR + µ′eRtS are both in
the normal cone Np(pR,S,T ). Since that cone is closed, we may take the limits in which µ/λ and
µ′/λ′ approach 0 and obtain that eRtS and eR are in Np(pR,S,T ). Since the braid cone NπI (πR,S,T )
is spanned by {eR, eRtS , eRtStT = eI}, it must be contained in the normal cone Np(pR,S,T ). We
conclude that every three-dimensional cone of the braid fan NΠI is contained in a cone of the
normal fan Np of p.

We now use higher coassociativity to carry out the analogous argument for any composition
F = (S1, . . . , Sk) of I, using Proposition 1.4.4. The higher coproduct ∆S1,...,Sk(p) = (p1, . . . , pk) may
be computed by iterating the coproduct maps ∆S,T in any meaningful way. Write pF = p1×· · ·×pk.
Each way gives rise to an expression for this face of p. One of them is

pF = (· · · ((pS1t···tSk−1,Sk)S1t···tSk−2,Sk−1tSk)...)S1,S2t···tSk .

This implies, by (13), that λ1eS1t···tSk−1
+ λ2eS1t···tSk−2

+ · · · + λk−1eS1 lies in the normal cone
Np(pF ) for any λ1 >> λ2 >> · · · >> λk−1 > 0. By sending λk−1/λk−2, . . . , λ3/λ2, λ2/λ1 →
0 in that order, we obtain eS1t···tSk−1

∈ Np(pF ). By computing the coproduct in different
ways, we similarly obtain eS1t···tSj ∈ Np(pF ) for any 1 ≤ j ≤ k − 1. We already know that
eS1t···tSk = eI ∈ Np(pF ) as well. Therefore, Np(pF ) contains the cone spanned by the vectors
eS1 , eS1tS2 , . . . , eS1t···tSk , and this cone is NπI (πF ).

It follows that every cone in the braid fan NπI is contained in a cone of the normal fan Np. By
definition, this means that p is a generalized permutahedron.

This shows that, for each I, P[I] is a subset of GP[I], and the condition on the action of bijections
guarantees that P is a subspecies of GP. The remaining conditions state that the operations on P
are the restriction of those of GP. It follows that P is a Hopf submonoid of GP, as desired. �

A similar result holds for Hopf monoids built out of (possibly unbounded) polyhedra. They are
necessarily Hopf submonoids of GP+. We leave the details to the reader.

1.6. The antipode of GP

In this section we derive a remarkably simple formula for the antipode of the Hopf monoid of
generalized permutahedra. This is the best possible formula in that it involves no cancellations or
repeated terms.

If p ⊆ RI is a generalized permutahedron, then so is every face q of p by Corollary 1.3.9.
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Theorem 1.6.1. The antipode of the Hopf monoid GP of generalized permutahedra is given by
the following cancellation-free and combination-free formula. If p is a generalized permutahe-
dron on I, then

(29) sI(p) = (−1)|I|
∑
q≤p

(−1)dim q q,

where the sum is over all faces q of p. The same formula holds for the antipode of the Hopf monoid
GP+ of extended generalized permutahedra.

Proof. Takeuchi’s formula (5) together with (26) give us

sI(p) =
∑
F�I

(−1)`(F ) µF∆F (p) =
∑
F�I

(−1)`(F ) pF .

This is indeed a linear combination of faces of p. Collecting the coefficient

αq =
∑

F�I: pF=q

(−1)`(F )

of each face q of p, we have

sI(p) =
∑
q≤p

αq q,

and we are left with the task of proving that αq = (−1)|I|−dim q.
Since the fan Np refines the fan N ◦πI , we have

pF = q ⇐⇒ N ◦πI (πF ) ⊆ N ◦p (q).

Define

Cq = {F � I | N ◦πI (πF ) ⊆ N ◦p (q)} and Cq = {F � I | N ◦πI (πF ) ⊆ Np(q)}.
Noting that `(F ) = dimN ◦πI (πF ), we have

αq =
∑
F∈Cq

(−1)dimN ◦πI (πF ).

We would like to interpret this sum as an Euler characteristic, but as F varies in Cq, the set of cones
N ◦πI (πF ) does not constitute a polyhedral complex, since it is not closed under subfaces. To remedy

this, we observe that the cones indexed by Cq as well as those indexed by Cq − Cq do constitute
polyhedral complexes. We may then rewrite the previous equation as

αq =
∑
F∈Cq

(−1)dimN ◦πI (πF ) −
∑

F∈Cq−Cq

(−1)dimN ◦πI (πF )

= χ(Cq)− χ(Cq − Cq),

where χ denotes the reduced Euler characteristic. We employ it since we want to count the com-
position (I) which belongs to both complexes.

Let us intersect the cones in NπI with the sphere S = {x ∈ RI |
∑
xi = 0,

∑
x2
i = 1}. The

resulting cells form a CW-decomposition of S, namely, the Coxeter complex of type AI . The cells
indexed by Cq form a CW-decomposition of Np(q) ∩ S, while the cells indexed by Cq − Cq form a
CW-decomposition of ∂Np(q) ∩ S. So we have

αp = χ(Np(q) ∩ S)− χ(∂Np(q) ∩ S).
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We now observe that if q is a proper face of p, Np(q) ∩ S is a ball of dimension dimNp(q)− 2, and
∂Np(q) ∩ S is a sphere of dimension dimNp(q)− 3. Therefore, in this case,

αq = 0− (−1)dimNp(q)−3 = (−1)|I|−dim q.

On the other hand, Np(p)∩S is a sphere of dimension dimNp(p)− 2, and ∂Np(p)∩S is empty. So
in this case

αp = (−1)dimNp(p)−2 − 0 = (−1)|I|−dim p

as well. This completes the proof of (29).
The formula is cancellation-free and combination-free since distinct polytopes are linearly in-

dependent in GP.
Formula (29) holds for the Hopf monoid GP+, as stated. In the proof, we employ (28) in place

of (26), and the rest of the argument goes through unchanged. �

Remark 1.6.2. Let P = kP be any linearized Hopf monoid. The coefficients of the antipode
on the basis P always admit a description in terms of the reduced Euler characteristic of a pair of
complexes. See [4, Section 7.7] and [5, Section 12.9].

The formula also holds for the quotients GP and GP+. At this level it is no longer combination-
free, since normally equivalent faces may occur. It is still cancellation-free, since normally equivalent
polytopes have the same dimension and hence only terms of the same sign may combine in (29).
For example, the 11 faces of the pentagon in GP[a, b, c] combine in the antipode formula as follows.

((s = + 2  _ + + 2    5  _

The Hopf monoid GP is commutative, so by Proposition 1.1.17 the antipode is involutory. The
reader may enjoy verifying from (29) that this boils down to the fact that in the poset of faces of
the polytope p, the Möbius function satisfies

µ(q, p) = (−1)dim p−dim q.

This holds since the poset of faces of a polytope is Eulerian.



CHAPTER 2

Permutahedra, associahedra, and inversion

2.1. The group of characters of a Hopf monoid

We return to the general setting of Hopf monoids of Section 1.1. We define the notion of
characters on a Hopf monoid, and discuss how they assemble into a group. We use this general
construction to settle a question of Loday [66] and a conjecture of Humpert and Martin [58] in
Sections 2.4 and 3.2, respectively.

2.1.1. Characters.

Definition 2.1.1. Let H be a connected Hopf monoid in vector species. A character ζ on H
is a collection of linear maps

ζI : H[I]→ k,

one for each finite set I, subject to the following axioms.

Naturality. For each bijection σ : I → J and x ∈ H[I], we have ζJ
(
H[σ](x)

)
= ζI(x).

Multiplicativity. For each I = StT , x ∈ H[S] and y ∈ H[T ], we have ζI(x·y) = ζS(x)ζT (y).

Unitality. The map ζ∅ : H[∅]→ k sends 1 ∈ k = H[∅] to 1 ∈ k: we have ζ∅(1) = 1.

In most examples that interest us, naturality and unitality are trivial, and we can think of
characters simply as multiplicative functions. When H is the linearization of a Hopf monoid H
over set species, the characters ζ are constructed easily: one chooses arbitrarily the value ζI(h) for
each object h ∈ H[I] that is indecomposable under multiplication, and then extend those values
multiplicatively to all objects.

2.1.2. The character group. The characters of a connected Hopf monoid H have the struc-
ture of a group, called the character group X(H).

Theorem 2.1.2. Let H be a connected Hopf monoid in vector species. The set X(H) of char-
acters of H is a group under the convolution product, defined by

(30) (ϕψ)I(x) =
∑

I=StT
ϕS(x|S)ψT (x/S)

for characters ϕ and ψ. The identity ε is given by εI = 0 if I 6= ∅ and ε∅(1) = 1. The inverse of a
character ζ is ζ ◦ s, its composition with the antipode s of H.

Proof. We need to check that the convolution product of characters ϕ and ψ is indeed a
character. Let I = S tT be a decomposition and z = x · y for x ∈ H[S] and y ∈ H[T ]. Then, using

43
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the notation of (3) and the compatibility of the product and coproduct, we get

(ϕψ)I(x · y) =
∑

I=S′tT ′
ϕS′((x · y)|S′)ψT ′((x · y)/S′) =

∑
I=S′tT ′

ϕS′(x|A · y|C)ψT ′(x/A · y/C)

=
∑

S=AtB
T=CtD

ϕA(x|A)ϕC(y|C)ψB(x/A)ψD(y/C) = (ϕψ)S(x) · (ϕψ)T (y)

as desired. It is easy to check that ε is indeed the identity, and the description of the inverse follows
from [2, Definition 1.15]. �

There is a well-known analogous notion for Hopf algebras. If H is a Hopf algebra, then a
character is a function from H to k that is multiplicative and unital. The characters of H form a
group under the convolution φψ = m(φ⊗ ψ)∆. In this group, the inverse of a character φ is φ ◦ s,
where s is the antipode.

We mentioned in Section 1.1.8 that the antipode of a Hopf monoid plays the role of the inverse
function in a group. The previous theorem is a concrete manifestation of that analogy. The
following is another fundamental question.

Problem 2.1.3. Find an explicit description for the character group of a given Hopf monoid.

We will now answer Problem 2.1.3 for permutahedra and associahedra, in Sections 2.2 and
2.3 respectively. This will establish the connection between these Hopf-theoretic structures on
polytopes and the inversion of power series, as described in the introduction.

2.2. Π: Permutahedra and the multiplication of power series

In this section we consider the Hopf monoid of permutahedra, and show that its character group
is the group of formal power series under multiplication.

Recall that πI is the standard permutahedron in RI . Let Π be the Hopf submonoid of GP
generated by the standard permutahedra, where the Hopf monoid GP is the quotient of GP where
we identify generalized permutahedra with the same normal fan.

Lemma 2.2.1. The coproduct of Π is given by

∆S,T (πI) = (πS , πT ).

for each decomposition I = S t T .

Proof. From the description of the faces of permutahedron πI ⊆ RI in Section 1.3.4 we know
that the maximal face of πI in the direction of 1S is πS,T = πI |S ×πI/S where πI |S is a translation
of πS and πI/S is equal to πT . The result follows. �

This implies, in particular, that the corresponding Hopf monoid in vector species is given by

(31) Π[I] = span{πS1 × · · · × πSk | I = S1 t · · · t Sk}.
We can now prove the main result of this section.

Theorem 2.2.2. The group of characters X(Π) of the Hopf monoid of permutahedra is isomor-
phic to the group of exponential formal power series{

1 + a1x+ a2
x2

2!
+ a3

x3

3!
+ · · · | a1, a2, . . . ∈ k

}
under multiplication.
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Proof. Since characters are multiplicative and invariant under relabeling, a character ζ of
Π is uniquely determined by the sequence (1, z1, z2, . . .) of values that it takes on the standard
permutahedra of order 0, 1, 2, . . .. Here zn = ζI(πI) for |I| = n. (Recall that any character
has z0 = ζ∅(1) = 1.) We encode this sequence in the exponential generating function ζ(t) =
1 + z1t+ z2t

2/2! + z3t
3/3! + · · · . Conversely, any such formal power series determines a character

of Π.
Now suppose that two characters ϕ, ψ and their convolution product ϕψ give rise to sequences

(1, a1, a2, . . .), (1, b1, b2, . . .), and (1, c1, c2, . . .), respectively. Consider any I with |I| = n. By (30)
we have

cn = (ϕψ)I(πI) =
∑

I=StT
ϕS(πS)ψT (πT ) =

n∑
k=0

(
n

k

)
akbn−k.

This is equivalent to

ϕψ(x) :=
∑
n≥0

cn
xn

n!
=

∑
k≥0

ak
xk

k!

∑
l≥0

bl
xl

l!

 =: ϕ(x)ψ(x),

as desired. �

Using Lemma 2.2.1 it is not difficult to see that the Hopf monoid of permutahedra Π is isomor-
phic to the Hopf monoid of set partitions Π. Theorem 1.6.1 then gives us a combinatorial formula
for the antipode of the Hopf monoid of set partitions Π. We will carry out this computation in
Section 5.6, and explain why the Fock functor K takes the Hopf monoid or permutahedra Π to the
Hopf algebra of symmetric functions Λ.

2.3. K(A): Associahedra and the composition of power series

In this section we consider the Hopf algebra K(A) of Loday associahedra, and show that its
character group is the group of formal power series under composition.

2.3.1. Loday’s associahedron. The associahedron is “a mythical polytope whose face struc-
ture represents the lattice of partial parenthesizations of a sequence of variables” [52]. Stasheff [94]
constructed it as an abstract cell complex in the context of homotopy theory and Milnor suggested
that it could be realized as a polytope. There are now many different polytopal realizations due
to Tamari, Stasheff, Haiman, Lee, and others; see [27] for a survey. We will focus on the following
construction due to Loday [65] and, in this formulation, to Postnikov [77].

Definition 2.3.1. Let I be a finite set and ` be a linear order on I. Loday’s associahedron a`
is the Minkowski sum

a` =
∑
i≤j

∆[i,j]`

where [i, j]` = {m ∈ I | i ≤ m ≤ j in `} is the interval from i to j for i ≤ j in `.

We let an denote the Loday associahedron for the natural order of [n]. We state the following
theorem for completeness, but the connection between the associahedron and parenthesizations
will be irrelevant for now. We will return to this connection and its combinatorial consequences in
Section 5.7.

Theorem 2.3.2 ([65, 77]). Loday’s associahedron a` is a simple polytope whose face poset is
isomorphic to the poset of partial parenthesizations of a sequence of n + 1 variables ordered by
refinement. In particular, the number of vertices is the Catalan number Cn = 1

n+1

(
2n
n

)
.
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A key property of Loday’s associahedron is the following.

Lemma 2.3.3. Let I be a finite set and ` a linear order on I. Let I = S t T be a decomposition
and let T = T1 t · · · t Tk be the decomposition of T into maximal subintervals of `. Then

a` |S ≡ a` |S , a`/S = a` |T1 × · · · × a` |Tk

where ≡ denotes normal equivalence and for each subset U ⊆ I, ` |U denotes the restriction of the
linear order ` to U .

Proof. Let us write [i, j] for [i, j]` for simplicity. The maximal face of a Minkowski sum P +Q
in direction v is (P +Q)v = Pv +Qv [51]. Therefore the 1S-maximal face of a` is

(a`)S,T = (a`)1S =
∑
i≤j

(
∆[i,j]

)
1S

=
∑

i≤j|[i,j]∩S 6=∅

∆[i,j]∩S +
∑

i≤j|[i,j]⊆T

∆[i,j],

where the first summand lives in RS and the second lives in RT , so they are (a`)|S and (a`)/S ,
respectively. In RT we have

(a`)/S =
∑

i≤j|[i,j]⊆T

∆[i,j] =
k∑
t=1

∑
i≤j|[i,j]⊆Tl

∆[i,j] =
k∑
t=1

a` |Tt = a` |T1 × · · · × a` |Tk

as desired. In RS we get

(a`)|S =
∑

i≤j|[i,j]∩S 6=∅

∆[i,j]∩S .

Now notice that [i, j] ∩ S is always a subinterval of S with respect to the induced order ` |S, and
every such subinterval equals [i, j] ∩ S for some choice of i ≤ j in `. It follows that the Minkowski
sum above involves the same summands as the Minkowski sum defining a` |S – possibly with different
coefficients.

We now recall the fact that the normal fan N (P +Q) is the common refinement of N (P ) and
N (Q), while N (λP ) = N (P ) for any λ > 0 [51]. Therefore the normal fan of a Minkowski sum of
scaled polytopes

∑
i λiPi does not depend on the scaling factors λi as long as they are all positive.

This implies that (a`)|S ≡ a` |S as desired. �
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Figure 1. The Minkowski sum decompositions of a9 and (a9)148,235679.

The above description of (a`)S,T = (a`)|S × (a`)/S has a nice pictorial description. It is natural
to arrange the summands of an =

∑
1≤i≤j≤n ∆[i,j] into a staircase of size n, as shown in the left

panel of Figure 1 for n = 9. To get the 1S-maximal face (an)S,T we replace each summand ∆[i,j]
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with (∆[i,j])1S . We can separate the resulting summands into a staircase above each one of the
Tis – which give the associahedra a` |T1 , . . . , a` |Tk – and a (fattened) staircase above S which gives
a polytope normally equivalent to a` |S . This is illustrated in the right panel of Figure 1 for the
decomposition [9] = {1, 4, 8} t {2, 3, 5, 6, 7, 9}.

2.3.2. The Hopf algebra of Loday associahedra and its character group. We consider
the Hopf monoid A generated by associahedra inside the Hopf monoid GP of generalized permuta-
hedra modulo normal equivalence. We also consider the Hopf algebra of associahedra K(A) obtained
by applying the Fock functor K to the Hopf monoid A. Recall that the Fock functor K identifies
elements of H[n] in the same Sn orbit. Since every linear order ` on [n] has a bijection to [n], every
corresponding Loday associahedron a` in Rn is identified with the standard Loday associahedron
an in the Hopf algebra K(A). Lemma 2.3.3 may be restated algebraically as follows.

Corollary 2.3.4. The coproduct of a Loday associahedron in GP is given by

∆S,T (a`) = (a` |S , a` |T1 × · · · × a` |Tk).

for each linear order ` on I and each decomposition I = S t T , where T = T1 t · · · t Tk is the
decomposition of T into maximal intervals of `.

In particular, it follows that A[I] consists of products of associahedra:

(32) A[I] = {a`1 × · · · × a`k | `i is a linear order on Si for I = S1 t · · · t Sk}.

We can now prove the main result of this section.

Theorem 2.3.5. The group of characters X(K(A)) of the Hopf algebra of associahedra is iso-
morphic to the group of ordinary formal power series{

x+ a1x
2 + a2x

3 + · · · | a1, a2, . . . ∈ k
}

under composition.

Proof. A character ζ of K(A) is uniquely determined by the sequence (1, z1, z2, . . .) where
zn = ζ[n](an). We encode that character in the formal power series ζ(t) = t + z1t

2 + z2t
3 + · · · .

Conversely, any such formal power series gives a character of K(A).
Now suppose that two characters ϕ, ψ and their convolution product ϕψ give sequences

(1, a1, a2, . . .), (1, b1, b2, . . .), and (1, c1, c2, . . .), respectively. By (30) and Corollary 2.3.4,

cn−1 = (ϕψ)[n−1](an−1) =
∑

[n−1]=StT

ϕS(aS)ψT1(aT1) · · ·ψTk(aTk).

where T = T1 t · · · t Tk is the decomposition of T into maximal subintervals of [n − 1], and
S, T1, . . . , Tk are listed in their standard linear order.

Each (k − 1)-subset S ⊆ [n − 1] determines a “gap sequence” i1, . . . , ik where ij = |Tj | is the
number of elements of [n − 1] in the gap between the (j − 1)th and the jth elements of S. These
non-negative integers satisfy i1 + · · ·+ ik + (k − 1) = n− 1, and it is clear how to recover S from
them. Since an−1|S ≡ ak−1 and an−1/S ≡ ai1 ×· · ·×aik by Lemma 2.3.3, we may rewrite the above
equation as

cn−1 =
n∑
k=1

∑
i1,...,ik≥0

i1+···+ik+(k−1)=n−1

ak−1bi1 · · · bik
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which is equivalent to

φψ(t) :=
∑
n≥1

cn−1x
n =

∑
k≥1

ak−1

∑
i≥0

bix
i+1

k

=: φ(ψ(t)),

as desired. �

A similar Hopf-theoretical result, without the connection to associahedra, is due to Doubilet,
Rota, and Stanley [34].

In light of Corollary 2.3.4, Theorem 1.6.1 gives us a combinatorial formula for the antipode of
the Hopf monoid of paths A. We will carry out this computation in Section 5.7, and relate the
Hopf algebra of associahedra K(A) to the Faà di Bruno Hopf algebra F .

2.4. Inversion of formal power series and Loday’s question

In this section we will show how the formulas for multiplicative and compositional inverses of
formal power series follow directly from the Hopf algebraic structures Π and K(A) on permutahedra
and associahedra, respectively.1

2.4.1. Multiplicative Inversion Formulas. As illustrated in the Introduction, the multi-
plicative inversion of power series is precisely given by the facial structure of permutahedra. We
now explain this phenomenon.

Theorem 2.4.1. (Multiplicative Inversion, Polytopal Version) The multiplicative inverse of

A(x) = 1 + a1x+ a2
x2

2!
+ a3

x3

3!
+ · · · is

1

A(x)
= B(x) = 1 + b1x+ b2

x2

2!
+ b3

x3

3!
+ · · ·

where

bn =
∑

F face of πn

(−1)n−dimFaF

and we write aF = af1 · · · afk for each face F ∼= πf1 × · · · × πfk of the permutahedron πn.

Proof. Theorem 2.2.2 allows us to identify the formal power series A(x) =
∑
anx

n/n! and
1/A(x) = B(x) =

∑
bnx

n/n! with the characters α and β of the Hopf monoid Π determined
uniquely by

α[n](πn) = an, β[n](πn) = bn,

where πn is the standard permutahedron in R[n]. By Theorem 2.2.2, since B(x) = 1/A(x), these
characters are inverses of each other in the character group X(Π).

Recall that the inverse in the character group of any Hopf monoid is given by β = α ◦ s where
s is the antipode. For Π, this antipode is given by Theorem 1.6.1. Therefore

bn = β[n](πn) = (α ◦ s)[n](πn) = α[n]

 ∑
F face of πn

(−1)n−dimFF

 =
∑

F face of πn

(−1)n−dimFaF ,

using the multiplicativity of the character α. �

1More symmetrically, and slightly more complicatedly, we could use K(Π) instead of Π here.
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Theorem 2.4.2. (Multiplicative Inversion, Enumerative Version) The multiplicative inverse of

A(x) = 1 + a1x+ a2
x2

2!
+ a3

x3

3!
+ · · · is

1

A(x)
= B(x) = 1 + b1x+ b2

x2

2!
+ b3

x3

3!
+ · · · ,

where

bn =
∑

〈1m12m2 ··· 〉`n

(−1)|m|
(

n

1, 1, . . .︸ ︷︷ ︸
m1

, 2, 2, . . .︸ ︷︷ ︸
m2

, . . .

)(
|m|

m1,m2, . . .

)
am1

1 am2
2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 = 11 . . .︸ ︷︷ ︸
m1

22 . . .︸ ︷︷ ︸
m2

· · · of n, where |m| = m1 +m2 + · · · .

Proof. Recall from Section 1.3.4 that the faces of πn are in bijection with the compositions
(S1, . . . , Sk) of [n], where the face F = πS1,...,Sk

∼= πS1 × · · · × πSk corresponds to the composition
(S1, . . . , Sk). If we let mi be the number of Sjs of size i, then n − dimF = k = |m| and aF =
am1

1 am2
2 · · · . Therefore the coefficient of this monomial is the number of compositions leading to

block sizes 〈1m12m2 · · · 〉. There are
(
m1+m2+···
m1,m2,...

)
ways of assigning these sizes to the parts S1, . . . , Sk

in some order. Having fixed that order, there are then
(

n
1,1,...,2,2,...

)
ways of partitioning the elements

of I into parts S1, . . . , Sk of those respective sizes. The desired result follows. �

2.4.2. Compositional inversion formulas. Just as the facial structure of permutahedra
tells us exactly how to compute the multiplicative inverse of a formal power series, the facial
structure of associahedra tell us how to compute the compositional inverse.

Theorem 2.4.3. (Lagrange Inversion, polytopal version) The compositional inverse of

C(x) = x+ c1x
2 + c2x

3 + · · · is C〈−1〉(x) = D(x) = x+ d1x
2 + d2x

3 + · · · ,

where

dn =
∑

F face of an

(−1)n−dimF cF

and we write cF = cf1 · · · cfk for each face F ∼= af1 × · · · × afk of the associahedron an.

Proof. We proceed exactly as in the proof of Theorem 2.4.1. We identify the formal power
series C(x) =

∑
cn−1x

n and C〈−1〉(x) = D(x) =
∑
dn−1x

n with the characters γ and δ of the Hopf
algebra of associahedra K(A) determined uniquely by

γ[n](an) = cn, δ[n](an) = dn

for the standard Loday associahedron an. By Theorem 2.3.5, since C〈−1〉(x) = D(x), these charac-
ters are inverses in the character group X(K(A)). Therefore δ = γ ◦ s, and the result now follows
from the antipode formula of Theorem 1.6.1. �

Theorem 2.4.4. (Lagrange Inversion, enumerative version) The compositional inverse of

C(x) = x+ c1x
2 + c2x

3 + · · · is C〈−1〉(x) = D(x) = x+ d1x
2 + d2x

3 + · · · ,

where

dn =
∑

〈1m12m2 ··· 〉`n

(−1)|m|
(n+ |m|)!

(n+ 1)!m1!m2! · · ·
cm1

1 cm2
2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 of n, where |m| = m1 +m2 + · · · .
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Proof. This follows from Theorem 2.4.3 and the known correspondence between faces of asso-
ciahedra and trees, which we reprove in a more general setting in Section 5.5. More precisely, the
(n−|m|)-dimensional faces of the associahedron an of type am1

1 ×am2
2 ×· · · are in bijection with the

plane rooted trees that have n+1 leaves and mi vertices of down-degree i for each i ≥ 1. The result
then follows from the fact [91, Theorem 5.3.10] that there are (n+ |m|)!/((n+ 1)!m1!m2! · · · ) such
plane rooted trees. �

2.4.3. Loday’s question and Schmitt’s remark. It has long been known that Lagrange
inversion is closely related to the enumeration of trees (or, equivalently, parenthesizings). In turn,
this enumeration is related to the associahedron; see for example [6, 91]. However, in 2005,
Loday [66] asked for a direct explanation of the connection between Lagrange inversion and the
associahedra:

“There exists a short operadic proof of the [Lagrange inversion] formula which
explicitly involves the parenthesizings, but it would be interesting to find one
which involves the topological structure of the associahedron.”

The associahedral statement and proof of the Lagrange inversion formula in Theorem 2.4.3 may
be regarded as an answer to Loday’s question. It is a combinatorics-free approach. Aside from the
basic Hopf monoid architecture, it relies only on two key ingredients:
• our topological proof for the antipode of the associahedron (Theorem 1.6.1)
• the structure of Loday’s associahedron with respect to the 1S directions (Lemma 2.3.3)

Interestingly, there are many other realizations of the associahedron as a generalized permutahedron
[28, 29, 54, 56, 57, 64, 74, 75]. These have isomorphic face posets, but they lead to different
Hopf structures and different character groups. Surprisingly, to answer Loday’s question within
this algebro-polytopal context, Loday’s realization of the associahedron is precisely the one that
we need!

Relatedly, in the closing remarks to his 1987 paper [82], Schmitt wrote about the cancellation
of 1s and −1s that leads to his Hopf algebraic proof of the Lagrange inversion formula:

“We believe that an understanding of exactly how these cancellations take place
will not only provide a direct combinatorial proof of the Lagrange inversion for-
mula, but may well yield analogous formulas for the antipodes of [...] other [...]
Hopf algebras.”

Schmitt’s suggestion is very close to the philosophy of this project, though our approach is more
geometric and topological than combinatorial. Applying the same point of view to other families
of polytopes, we will obtain optimal formulas for the antipodes of many Hopf monoids throughout
this monograph.



CHAPTER 3

Submodular functions, graphs, matroids, and posets

3.1. SF: Submodular functions and generalized permutahedra

Generalized permutahedra arise in a multitude of settings, and can be used to model many com-
binatorial objects: graphs, matroids, posets, set partitions, paths, and many others. In this section
we present one reason for the ubiquity of these polyhedra: generalized permutahedra are equiv-
alent to submodular functions, which are central objects in optimization. These functions occur
in numerous mathematical and real-world contexts, since they are characterized by a diminishing
returns property that is natural in many settings.

3.1.1. Boolean functions. Let 2I denote the collection of subsets of a finite set I. A Boolean
function on I is an arbitrary function z : 2I → R such that z(∅) = 0.

Let BF[I] denote the set of Boolean functions on I. To turn the species BF into a connected
Hopf monoid, we first notice that BF[∅] is indeed a singleton. Now fix a decomposition I = S t T .
We make the following definitions.

• The product of two Boolean functions u ∈ BF[S] and v ∈ BF[T ] is the function u · v ∈ BF[I]
given by

(33) (u · v)(E) := u(E ∩ S) + v(E ∩ T ) for E ⊆ I.

• The coproduct of a Boolean function z ∈ BF[I] is (z|S , z/S) ∈ BF[S]× BF[T ], where

(34) z|S(E) := z(E) for E ⊆ S and z/S(E) := z(E ∪ S)− z(S) for E ⊆ T .

The Hopf monoid axioms of Definition 1.1.5 are easily verified. To illustrate this, we check
the compatibility between products and coproducts. Consider two compositions I = S t T and
I = S′ t T ′ as described in (3) and illustrated below, and choose u ∈ BF[S], v ∈ BF[T ].

'

&

$

%

A B

C D

�
 �	 ��
�
�E F

S = A tB

T = C tD

S′ = A t C T ′ = B tD

For any E ⊆ S′ we have

(u · v)|S′(E) = (u · v)(E) = u(E ∩ S) + v(E ∩ T ) = u(E ∩A) + v(E ∩ C)

= u|A(E ∩A) + v|C(E ∩ C) =
(
u|A · v|C

)
(E),
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and for any F ⊆ T ′ we have

(u · v)/S′(F ) = (u · v)(F ∪ S′)− (u · v)(S′)

= u
(
(F ∪ S′) ∩ S

)
+ v
(
(F ∪ S′) ∩ T

)
− u(S′ ∩ S)− v(S′ ∩ T )

= u
(
(F ∩B) ∪A

)
− u(A) + v

(
(F ∩D) ∪ C

)
− v(C)

= (u/A)(F ∩B) + (v/C)(F ∩D) =
(
(u/A) · (v/C)

)
(F ).

Thus (u · v)|S′ = (u|A) · (v|C) and (u · v)/S′ = (u/A) · (v/C), as needed.

3.1.2. Submodular functions and diminishing returns. A Boolean function z on I is
submodular if

(35) z(A ∪B) + z(A ∩B) ≤ z(A) + z(B)

for every A,B ⊆ I. Submodular functions arise in many contexts in mathematics and applications,
partly because submodularity is equivalent to a natural diminishing returns property that we now
describe.

Suppose the Boolean function z measures some quantifiable benefit z(A) associated to each
subset A ⊆ I. Then the contraction z/S has a natural interpretation: for e /∈ S,

z/S(e) = z(S ∪ e)− z(S) = marginal return of adding e to S.

Theorem 3.1.1 ([86, Theorem 44.1], Diminishing returns). A Boolean function z on I is
submodular if and only if for every e ∈ I we have

(36) z/S(e) ≥ z/T (e) for S ⊆ T ⊆ I − e (diminishing returns)

that is, the marginal return z/S(e) decreases as we add more elements to S.

From the algebraic point of view, submodular functions have a Hopf monoid structure because
they are closed under products and coproducts.

Theorem 3.1.2. Let SF[I] denote the set of submodular functions on I. Then SF is a Hopf
submonoid of BF, with the product and coproduct given by (33) and (34).

Proof. It suffices to show that submodular functions are closed under the product (33) and
coproduct (34) of Boolean functions as defined above. This is well known [72] and follows from
Theorem 3.1.1; the details are left to the reader. �

3.1.3. Submodular functions and generalized permutahedra. The base polytope of a
given Boolean function z : 2I → R is the set1

(37) P(z) := {x ∈ RI |
∑
i∈I

xi = z(I) and
∑
i∈A

xi ≤ z(A) for all A ⊆ I}.

For x ∈ RI and A ⊆ I, we denote

x(A) =
∑
i∈A

xi.

We say the inequality x(A) ≤ z(A) is optimal for P(z) if z(A) is the minimum value for which this
inequality holds; that is, if z(A) equals the maximum value of x(A) over all x in the polytope P(z).

1It is worth remarking that, in Postnikov’s work on generalized permutahedra [77], he writes the defining
inequalities as

∑
i∈A xi ≥ z′(A). The difference is unimportant thanks to the equality

∑
i∈I xi = z(I). Our convention

affords a cleaner connection between generalized permutahedra and submodular functions.
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The following theorem collects several results from the literature, and plays a central role in
this monograph.

Theorem 3.1.3 ([32, 41, 71, 77, 86]). For a polytope p in RI , the following conditions are
equivalent.

(1) The polytope p is a generalized permutahedron.
(2) The normal fan Np is a coarsening of the braid arrangement BI .
(3) Every edge of p is parallel to the vector ei − ej for some i, j ∈ I.
(4) There exists a submodular function z : 2I → R such that p = P(z).

Furthermore, when these conditions hold, the submodular function z of part 4 is unique, and every
definining inequality in (37) is optimal.

We will extend this result to possibly unbounded objects in Theorem 3.1.6, and provide refer-
ences and a complete proof there. We are now ready to prove an important result about the Hopf
monoid GP.

Theorem 3.1.4. The collection of maps

SF[I]→ GP[I], z 7→ P(z)

is an isomorphism of Hopf monoids in set species SF ∼= GP.

Proof. Theorem 3.1.3 shows that each one of those maps is bijective. It is not difficult to
check that the products on SF and GP agree. To prove that the coproducts agree, we now check
that restriction and contraction coincide in SF and GP.

Let p = P(z) be a generalized permutahedron in RI and let I = S tT be a decomposition. We
need to show that the maximal face in direction 1S is pS,T = P(z|S)× P(z/S). We prove the two
inclusions.

⊇: First consider any point x = (xS , xT ) ∈ P(z|S) × P(z/S). For any A ⊆ I let AS = A ∩ S
and AT = A ∩ T , so that A = AS tAT . Then

x(A) = xS(AS) + xT (AT ) ≤ z|S(AS) + z/S(AT )

= z(AS) + z(AT ∪ S)− z(S) = z(A ∩ S) + z(A ∪ S)− z(S) ≤ z(A)

by submodularity. In particular, for A = I we get

x(I) = xS(S) + xT (T ) = z|S(S) + z/S(T ) = z(S) + z(T ∪ S)− z(S) = z(I).

Therefore x ∈ p. On the other hand, for A = S we get

x(S) = xS(S) + xT (∅) = z|S(S) + 0 = z(S)

which, in view of (37), implies that x is 1S-maximal in p, that is, x ∈ pS,T .

⊆: In the other direction, let x ∈ pS,T . By Theorem 3.1.3, x attains the 1S-optimal value

x(S) = z(S). Letting x = (xS , xT ) ∈ RS × RT , we then have

xS(S) = x(S) = z(S) = z|S(S),

xT (T ) = x(T ) = x(I)− x(S) = z(I)− z(S) = z/S(T ).

Furthermore, for any A ⊆ S and B ⊆ T ,

xS(A) = x(A) ≤ z(A) = z|S(A),

xT (B) = x(B) = x(B ∪ S)− x(S) ≤ z(B ∪ S)− z(S) = z/S(B).

These observations imply that xS ∈ P(z|S) and xT ∈ P(z/S) as desired. �
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A polymatroid is a submodular function f : 2I → R with f(∅) = 0 that is non-negative (f(S) ≥ 0
for all ∅ 6= S ⊆ I) and non-decreasing (f(S) ≤ f(T ) for all S ⊆ T ⊆ I) [36]. Its base polytope is
the corresponding generalized permutahedron P(f). One can verify that a submodular function
f is a polymatroid if and only if P(f) is in the positive orthant. Therefore, as polytopes modulo
translation, the family of generalized permutahedra is the same as the family of base polytopes of
polymatroids.

Definitions of restriction and contraction for polymatroids are given in [36] and [32]. They
correspond to restriction of contraction of Boolean functions and of generalized permutahedra from
Sections 1.4.1 and 3.1.1.

Proposition 3.1.5. Let PM[I] denote the set of polymatroids on I. Then PM is a Hopf
submonoid of SF.

Proof. One readily verifies that polymatroids are closed under the product (33) and coproduct
(34) of Boolean functions, from which the result follows. �

3.1.4. GP+: Extended generalized permutahedra and extended submodular func-
tions. We now extend the previous constructions to allow for unbounded polyhedra. Most of the
results of this section may be found in Fujishige [41].

Let an extended Boolean function be a function z : 2I → R∪{∞} with z(∅) = 0 and z(I) 6=∞.
We say z is submodular if

z(A ∪B) + z(A ∩B) ≤ z(A) + z(B) for all A,B ⊆ I such that z(A), z(B) are finite.

Extended submodular functions are also called submodular systems [41]. The base polyhedron of z
is

(38) P(z) := {x ∈ RI |
∑
i∈I

xi = z(I) and
∑
i∈A

xi ≤ z(A) for all A ⊆ I with z(A) <∞}.

Theorem 3.1.3 extends to this setting, providing a bijective correspondence between extended
submodular functions and extended generalized permutahedra. We now survey this correspondence
in Theorem 3.1.6, providing proofs for some statements which we were not able to find in the
literature.

Define a braid cone to be a cone in (RI)∗ ∼= RI cut out by inequalities of the form y(i) ≥ y(j)
for i, j ∈ I. Define a root subspace of RI to be a subspace spanned by vectors of the form ei − ej
for i, j ∈ I; these vectors are the roots of the root system AI = {ei − ej | i, j ∈ I} in the sense of
Lie theory [59]. Define an affine root subspace of RI to be a translate of a root subspace.

Theorem 3.1.6 ([41, 77, 86]). For a polyhedron p in RI , the following are equivalent.

(1) The polyhedron p is an extended generalized permutahedron.
(2) The normal fan Np is a coarsening of (BI)|C , the restriction of the braid arrangement BI

to some braid cone C.
(3) The affine span of every face of p is an affine root subspace.
(4) There exists an extended submodular function z : 2I → R ∪ {∞} such that p = P(z).

Furthermore, when these conditions hold, the extended submodular function z of part 4 is unique,
and every definining inequality in (38) is optimal.

Proof. We proceed in several steps.

1⇔ 2: This is Definition 1.3.8.

3⇔ 4: This is anticipated by Fujishige in [41, Thms. 3.15, 3.18, 3.22] and proved explicitly
by Derksen and Fink in [32, Proposition 2.9] for megamatroids, where the function z is integral;
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their proof works for general z. In condition 3 they include the additional hypothesis that the
polyhedron p lies on a hyperplane of the form

∑
i∈I xi = r for some r ∈ R, but this follows from

the assumption that the affine span of p is an affine root subspace.

2⇒ 3: Assume p satisfies 2. Since 1 ∈ RI is in every braid cone, it is also in Np(p), so
1(x) =

∑
i∈I xi is constant on p.

Now let q be any d-dimensional face of p and write aff(q) = v+W for a vector v and a subspace
W . We need to show that W is a root subspace. The normal face Np(q) contains a face F of the
braid arrangement BI of its same dimension, so span(Np(q)) = span(F ) is the intersection of d
independent hyperplanes y(ik) = y(jk) for 1 ≤ k ≤ d. We claim that W = span{eik − ejk | 1 ≤ k ≤
d}. Since both of these vector spaces are d-dimensional, it suffices to show that eik − ejk ∈ W for
each k.

We have the following inequality description of Np(q):

Np(q) = {y ∈ RI | y(q1) = y(q2) for q1, q2 ∈ q, y(q) ≥ y(p) for q ∈ q, p ∈ p}

Since y ∈ Np(q) implies that y(ik) = y(jk), eik − ejk must be a linear combination of vectors of the
form q1 − q2 for q1, q2 ∈ q. But every such vector is in W , so eik − ejk ∈W as desired.

(3 + 4)⇒ 2: Let p satisfy 3 and 4.
First we show that the support of the normal fan Np

C = supp(Np) = {y ∈ RI | max
p∈p

y(p) is finite },

is a braid cone. Let D = Np(q) be a codimension 1 face of Np on the boundary of Np. Say
q is d-dimensional, and, in light of 3, let the affine span of q be a translate of the subspace
W = span{ei1 − ej1 , . . . , eid − ejd}. We claim that span(D) is the intersection of the hyperplanes
y(ik) = y(jk) for 1 ≤ k ≤ d. Since both subspaces have codimension d, it is enough to prove one
inclusion. To do that, observe that if y ∈ D, then y(q) is constant for q ∈ q, so y(w) = 0 for w ∈W
and therefore y(ik) = y(jk). The same statement is then true for any y ∈ span(D). We conclude
that C can be described by inequalities of the form y(i) ≥ y(j), as desired.

Now that we know that Np is supported on a braid cone C, we need to show that it is refined
by the braid arrangement; that is, that for y ∈ C, the relative order of the coordinates of y ∈ RI is
enough to determine the maximum face py. But condition 4 tells us that p = P(z) for an extended
submodular function z, and Fujishige showed that this family of functions may be optimized using
the greedy algorithm, which only pays attention to the relative order of the coordinates of y [41,
Thms. 3.15, 3.18]. The result follows.

Having proved the equivalence of 1, 2, 3, and 4, it remains to remark that the uniqueness and
optimality of the defining equations (38) of p are implicit in [41, Section 3]. �

Remark 3.1.7. When p is bounded, Theorem 3.1.6 reduces to Theorem 3.1.3. Condition 3
looks different in these two statements, but in this setting, the seemingly weaker condition that
every edge is parallel to a root ei − ej implies that every face spans an affine root subspace. The
reason for this is that in a bounded polytope, every face is spanned by its edges. This is not true
in general; some unbounded polytopes do not even have one-dimensional faces.

Let SF+[I] be the set of extended submodular functions on I. To construct a connected Hopf
monoid, we use essentially the same operations as in BF and SF. The only difference is that the
contraction z/S of z ∈ SF+[I] is no longer defined when z(S) =∞. Therefore, we need to modify
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the coproduct by defining

∆S,T (z) =

{
z|S ⊗ z/S if z(S) 6=∞
0 if z(S) =∞.

for a decomposition I = S t T . This definition forces us to work in the context of vector species.
It is now straightforward to extend Theorem 3.1.4 to this context.

Theorem 3.1.8. The collection of maps

SF+[I]→ GP+[I], z 7→ P(z)

is an isomorphism of Hopf monoids in vector species SF+ ∼= GP+.

3.2. G: Graphs and graphic zonotopes

In this section we revisit the Hopf monoid of graphs of Section 1.2.1, now taking a geometric
perspective: we realize G as a submonoid of GP. The key idea is that every graph g is modeled
by a generalized permutahedron Zg called its graphic zonotope, and this model respects the Hopf
structure of graphs. This geometric interpretation of the Hopf monoid G readily gives us the
optimal formula for its antipode – obtained independently by Humpert and Martin [58] – and
allows us to prove their conjecture from [58, Section 5].

3.2.1. Graphic zonotopes. Let g be a graph with vertex set I. Given A ⊆ I and an edge
e of g, we say that e is incident to A if either endpoint of e belongs to A. Consider the incidence
function

incg : 2I → Z
incg(A) = number of edges and half-edges of g incident to A.

For example, the incidence function of the graph

x
y

is given by

incg(∅) = 0, incg({x}) = 3, incg({y}) = 2, and incg({x, y}) = 3.

The following result is well-known.

Proposition 3.2.1. For any graph g, the incidence function incg is submodular.

Proof. By Theorem 3.1.1 it suffices to observe that the marginal benefit of adding e to S:

(incg)/S(e) = # of edges of g incident to e and not to S

diminishes as we add elements to S. �

By Theorem 3.1.3 and (37), the submodular function incg gives rise to a generalized permuta-
hedron P(inc(g)) = Zg which is called the graphic zonotope of g.

Example 3.2.2. Revisiting Example 1.2.1, if g is the graph
(( +  +  +  +  

_ _  _  _  

s
a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c

= _
then the graphic zonotope

Zg = P(incg) is given by

xa + xb + xc = 3, xa + xb ≤ 2, xb + xc ≤ 3, xa + xc ≤ 3, xa ≤ 1, xb ≤ 2, xc ≤ 2

and is shown in Figure 1. Note that the third and fifth inequalities are optimal but redundant.
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x  + x  = 3a       c

x  + x  = 3b       cx  + x  = 2a       b

x  = 2b

x  = 1a x  = 2c

x  + x  = 3b       cx  +a       

Figure 1. A graphic zonotope.

There is a useful alternative description of the zonotope of a graph.

Proposition 3.2.3. [77, Proposition 6.3] The zonotope Zg ⊆ RI of a graph g on I equals the
Minkowski sum

(39) Zg =
∑

{i} half-edge of g

∆i +
∑

{i,j} edge of g

∆{i,j}.

In particular, the zonotope of the complete graph KI on the set I is a translation of the standard
permutahedron πI :

ZKI = πI − eI .
Note that the right hand side of (39) may have repeated summands.

The facial structure of graphic zonotopes can be described combinatorially [77, 89] as we now
recall. A flat f of a graph g is a set of edges with the property that for any cycle of g consisting
of edges e1, . . . , ek, if e1, . . . , ek−1 ∈ f then ek ∈ f .

For each flat f of g and each acyclic orientation o of g/f , let g(f, o) be the graph obtained from
g by keeping f intact, and replacing each edge {i, j} not in f by the half-edge {i} where i→ j in
the orientation o of g/f . The following result is essentially known [89].

Lemma 3.2.4. Let g be a graph with vertex set I. The faces of the zonotope Zg ⊆ RI are in
bijection with the pairs of a flat f of g and an acyclic orientation o of g/f . The face corresponding
to flat f and orientation o is Zg(f,o), and it is a translation of Zf .

Proof. By (39), the maximal face of Zg in the direction of y ∈ RI is

(40) (Zg)y =
∑
{i}∈g

∆i +
∑
{i,j}∈g
y(i)=y(j)

∆{i,j} +
∑
{i,j}∈g
y(i)>y(j)

∆i +
∑
{i,j}∈g
y(i)<y(j)

∆j .

The vector y determines a flat fy consisting of the edges {i, j} of g such that y(i) = y(j). It also
determines an acyclic orientation oy of g/f obtained by giving the edge {i, j} the orientation i→ j
if y(i) > y(j) or i ← j if y(i) < y(j). Clearly the maximal face (Zg)y depends only on fy and oy.
Furthermore, different choices of fy and oy determine different faces of (Zg)y, and every choice of
a flat f of g and an acyclic orientation o of g/f can be realized by some vector y. This proves the
desired one-to-one correspondence. It follows from (40) that (Zg)y = Zg(fy ,oy) and that this is a
translation of Zfy , as desired. �
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3.2.2. Graphs as a submonoid of generalized permutahedra. Recall that G is the Hopf
monoid of graphs, where G[I] is the set of graphs with vertex set I, where repeated edges and
half-edges are allowed. For a decomposition I = S t T , the product of two graphs g1 ∈ G[S] and
g2 ∈ G[T ] is their disjoint union. The coproduct of g ∈ G[S] is (g|S , g/S) ∈ G[S]×G[T ], where the
restriction g|S ∈ G[S] is the induced subgraph on S, while the contraction g/S ∈ G[T ] is obtained
by keeping all edges incident to T , converting each edge from T to S into a half-edge on T .

Let Gcop be the Hopf monoid co-opposite to G, as defined at the end of Section 1.1.2.

Proposition 3.2.5. The map inc : Gcop → SF
∼=−→ GP is an injective morphism of Hopf

monoids.

Proof. We first check that inc is a morphism of Hopf monoids. Let I = S t T . Choose
g1 ∈ G[S] and g2 ∈ G[T ]. Since there are no edges connecting S to T in g1 · g2, an edge of g1 · g2

incident to A ⊆ I is either incident to A ∩ S or to A ∩ T , but not both. Hence,

incg1·g2(A) = incg1(A ∩ S) + incg2(A ∩ T ) = (incg1 · incg2)(A).

Thus, inc preserves products.
Let us now show that inc reverses coproducts. Choose g ∈ G[I]. If A ⊆ T , then for any edge

e of g incident to A there is a corresponding edge e′ of g/S incident to A (possibly a half-edge, if
the other endpoint of e belongs to S). Since every edge of g/S arises in this manner from an edge
of g, we have

incg/S (A) = incg(A) = (incg)|T (A).

Now, if A ⊆ S, notice that an edge of g incident to A ∪ T is either incident to T , or has both
endpoints in S (and at least one endpoint in A), in which case it is an edge of g|S . Therefore
incg(A ∪ T ) = incg(T ) + incg|S (A), so

incg|S (A) = incg(A ∪ T )− incg(T ) = (incg)/T (A).

It follows that inc reverses restrictions and contractions, as desired.
To prove injectivity, note that if a and b are two distinct vertices of a graph g, then the number

of edges of g between a and b is incg({a}) + incg({b})− incg({a, b}). Also, the number of half-edges
at a is incg(I)− incg(I \ {a}). These numbers determine g entirely. �

Remark 3.2.6. In graph theory one also considers the cut function cutg defined by

cutg(A) = the number of edges of g joining A to I \A,
The map g 7→ cutg is not a morphism of Hopf monoids G→ SF: neither restrictions nor contractions
are preserved. However, we do have cutg(A) = 2 · incg(A)−

∑
i∈A degg(i), where the degree degg(i)

is the number of edges incident to vertex i. It follows from this that cutg is submodular (a known
result) and its generalized permutahedron P(cutg) is a scaling of P(incg) = Zg followed by a
translation by the vector −degg ∈ RI . Therefore the map g 7→ cutg does give a morphism of Hopf

monoids G→ GP; but since P(incg) and P(cutg) are normally equivalent, this morphism does not
teach us anything new about the Hopf monoid of graphs.

3.2.3. The antipode of graphs. In view of Proposition 3.2.5 and Theorem 1.6.1, the an-
tipode of G is given by the facial structure of graphic zonotopes, as described in Lemma 3.2.4.

Corollary 3.2.7. The antipode of the Hopf monoid of graphs G is given by the following
cancellation-free and combination-free expression. If g is a graph on I then

sI(g) =
∑
f,o

(−1)c(f)g(f, o),
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summing over all pairs of a flat f of g and an acyclic orientation o of g/f , where c(f) is the number
of connected components of f .

Proof. This follows from Theorem 1.6.1 and Lemma 3.2.4, and the observation that the di-
mension of the zonotope Zf is |I| − c(F ). �

Example 3.2.8. Let us revisit Example 1.2.1. The formula

(( +  +  +  +  

_ _  _  _  

s
a b c a b c a b c a b c a b c a b c

a b c a b c a b c a b c

= _

is the algebraic manifestation of the face structure of the graphic zonotope of Example 3.2.2 which
consists of one parallelogram, four edges, and four vertices. These nine faces are the graphic
zonotopes of the nine graphs occurring in the expression above.

3.2.4. Simple graphs. A graph is simple if it has no half-edges or multiple edges. Let SG[I]
denote the set of all simple graphs with vertex set I. Then SG is a subspecies of G, but it is not a
Hopf submonoid because a contraction of a simple graph need not be simple.

To remedy this situation, consider the simplification map

G[I]→ SG[I], g 7→ g′.

which removes half-edges and edge multiplicities: in g′ there is a unique edge joining two vertices
a and b if and only if a 6= b and there is at least one edge joining a and b in g. This defines a
surjective morphism of species

G � SG.

The Hopf monoid structure of G descends to SG via this map, so that SG is a quotient Hopf monoid
of G. In SG, products and contractions have the same description as in G, while restrictions now
coincide with contractions. Therefore SG is cocommutative.

The (linearization of the) Hopf monoid SG appears (with different notation) in [2, Section 13.2].
A closely related structure was first considered by Schmitt [83, Example 3.3.(3)].

Proposition 3.2.9. There is a commutative diagram of morphisms of Hopf monoids as follows.

Gcop

����

� � // GP

����

SGcop � � // GP

Proof. Simplification gives the vertical map Gcop � SGcop while the map GP � GP identifies
generalized permutahedra with the same normal fan. The top map Gcop ↪→ GP is given by Propo-
sition 3.2.5, while the bottom map SGcop ↪→ GP sends a simple graph to the normal equivalence
class of its zonotope. To verify that the diagram commutes, we need to show that if g is a graph
and g′ is its simplification, then Zg and Zg′ are normally equivalent.

By (39), the normal fan N (Zg) is the common refinement of the fans N (∆{i}) for all half-edges
{i} and N (∆{i,j}) for all edges {i, j}. This common refinement is unaffected by the removal of
the former fans (which are trivial) and by the removal of repetitions of the latter fans. Therefore
N (Zg) = N (Zg′) as desired. �
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Corollary 3.2.10. The antipode of the Hopf monoid of simple graphs SG is given by the
following cancellation-free and combination-free expression. If g is a simple graph on I then

sI(g) =
∑

f flat of g

(−1)c(f)a(g/f) f

where a(g/f) is the number of acyclic orientations of the contraction g/f and c(f) is the number
of connected components of f .

Proof. This follows from Corollary 3.2.7 and the observation that when g is a simple graph,
the simplification of g(f, o) is f . �

An equivalent formula for Hopf algebras was also obtained by Humpert and Martin [58] through
a clever inductive argument. In the context of Hopf algebras isomorphic graphs are identified, so
to find the coefficient of a particular graph h in sI(g) one has to overcome the additional problem
of identifying all flats of g isomorphic to h. This is one reason to prefer working with Hopf monoids
instead of Hopf algebras in combinatorial contexts. See also Remark 3.3.7.

3.2.5. Characters of complete graphs and a conjecture of Humpert and Martin.
For each k ∈ C let ξk be the character on G given by (ξk)I(g) = k|I| for any graph g on vertex set
I. Let ζ be the character on G where ζI(g) equals 1 if g has no edges and 0 otherwise. For each
k ∈ C and c ∈ Z let ξkζ

c denote the convolution product of ξk and ζc in G.
Recall that a derangement of I is a permutation of I without fixed points, and an arrangement

is a permutation of a subset of I. The following formulas were conjectured by Humpert and Martin
[58].

Theorem 3.2.11 ([58, Conjecture (27)]). Let Kn be the complete graph on n vertices. Then∑
n≥0

(ξkζ
c)(Kn)

xn

n!
= ekx(1 + x)c

for any complex number k and integer c. In particular,

(ξ1ζ
−1)(Kn) = (−1)nDn (ξ−1ζ

−1)(Kn) = (−1)nAn

where Dn and An are the numbers of derangements and arrangements of [n] respectively.

Proof. Since the graphic zonotope of a complete graph KI is a translation of the standard
permutahedron πI by Proposition 3.2.3, the Hopf submonoid of G generated by complete graphs
is isomorphic to the Hopf submonoid Π of GP generated by standard permutahedra, considered
in Section 2.2. We may then regard ξk and ζ as characters on Π. This allows us to carry out the
required computations in the character group X(Π), where they become straightforward.

By Theorem 2.2.2, convolution of characters of Π corresponds to multiplication of their expo-
nential generating functions; therefore

∑
n≥0

(ξkζ
c)(πn)

xn

n!
=

∑
n≥0

ξk(πn)
xn

n!

∑
n≥0

ζ(πn)
xn

n!

c

= ekx(1 + x)c

as desired. By comparing this with the generating functions

∑
n≥0

(−1)nDn
xn

n!
=
∑
n≥0

[
(−1)n

(
n∑
i=0

(−1)i
n!

i!

)
xn

n!

]
=

∑
i≥0

xi

i!

∑
j≥0

(−1)jxj

 = ex(1 + x)−1
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and

∑
n≥0

(−1)nAn
xn

n!
=
∑
n≥0

[
(−1)n

(
n∑
i=0

n!

i!

)
xn

n!

]
=

∑
i≥0

(−1)ixi

i!

∑
j≥0

(−1)jxj

 = e−x(1 + x)−1

we obtain the remaining two formulas. �

3.3. M: Matroids and matroid polytopes

Similarly to graphs, matroids also have a polyhedral model called its matroid polytope, due to
Edmonds [36]. This model respects the Hopf-algebraic structure of matroids, introduced in 1982 by
Joni and Rota [60] and further studied by Schmitt [83]. We now employ the geometric perspective
to compute, for the first time, the optimal formula for the antipode of matroids.

3.3.1. Matroid polytopes. Let m be a matroid on ground set I. The rank of A ⊆ I in m,
denoted rankm(A), is the cardinality of any maximal independent set of m contained in A. The
matroid axioms guarantee that this is well-defined and moreover, that the function

rankm : 2I → N

is submodular [72, Lemma 1.3.1]; indeed, the marginal benefit of adding e to S

(rankm)/S(e) =

{
1 if e is independent of S,

0 if e is dependent on S

weakly decreases as we add elements to S.
By Theorem 3.1.3 and (37), the submodular function rankm gives rise to a generalized per-

mutahedron P(rankm) = P(m) which is called the matroid polytope of m. This polytope has an
elegant vertex description.

Proposition 3.3.1. [36, 44] The matroid polytope P(rankm) = P(m) of a matroid m on I is
given by

P(m) = conv {eb1 + · · ·+ ebr | {b1, . . . , br} is a basis of m} ⊆ RI ,

where {ei | i ∈ I} is the standard basis. Furthermore, every basis gives a vertex of P(m).

This construction goes back to Edmonds [36] in optimization, and later to Gel’fand, Goresky,
MacPherson, and Serganova [44] in algebraic geometry. In what follows, we will sometimes identify
a matroid m with its matroid polytope P(m).

Example 3.3.2. Revisiting Example 1.2.2, let m be the matroid of rank 2 on {a, b, c, d} whose
only non-basis is {c, d}. The matroid polytope P(m), shown in Figure 3.3.1, is given by the
inequalities:

xa+xb+xc+xd = 2, xa+xb, xa+xc, xa+xd, xb+xc, xb+xd ≤ 2, xc+xd ≤ 1, xa, xb, xc, xd ≤ 1

There does not seem to be a simple and purely combinatorial indexing for the faces of the
matroid polytope P(m). For a non-bijective description of these faces, see [10, Proposition 2] or
[22, Problem 1.26].
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a

b

d

c

Figure 2. The matroid polytope of the matroid of Example 3.3.2.

3.3.2. Matroids as a submonoid of generalized permutahedra. Recall that M is the
Hopf monoid of matroids, where M[I] is the set of matroids on ground set I. For a decomposition
I = S t T , the product of two matroids m1 ∈ M[S] and m2 ∈ M[T ] is their direct sum m1 ⊕m2 ∈
M[I]. The coproduct of a matroid m ∈ M[I] is (m|S ,m/S), where m|S ∈ M[S] and m/S ∈ M[T ]
are the restriction and contraction of m with respect to S, respectively.

Proposition 3.3.3. The map rank : M→ SF
∼=−→ GP is an injective morphism of Hopf monoids.

Proof. The descriptions for the rank function of the direct sum, restriction and contraction of
matroids in [72, Propositions 3.1.5, 3.1.7, 4.2.17] imply that rank is a morphism of Hopf monoids.
Injectivity holds since the rank function determines the matroid uniquely. �

More widely, by Proposition 3.1.5, basis polytopes of polymatroids also form a submonoid of
generalized permutahedra.

3.3.3. The antipode of matroids. We now give a formula for the antipode of matroids in
Proposition 3.3.3 and Theorem 1.6.1. The result is expressed in terms of the facial structure of
matroid polytopes.

Every matroid m has a unique maximal decomposition as a direct sum of smaller matroids. Let
c(m) be the number of summands, which are called the connected components of m [72, Section 4].

Theorem 3.3.4. The antipode of the Hopf monoid of matroids M is given by the following
cancellation-free and combination-free formula. If m is a matroid on I, then

(41) sI(m) =
∑
n≤m

(−1)c(n) n,

where we sum over all the nonempty faces n of the matroid polytope of m.

Proof. This is an immediate consequence of Theorem 1.6.1, taking into account that the
dimension of a matroid polytope P(m) on I equals |I| − c(m) [36]. �

As mentioned earlier, there seems to be no simple combinatorial indexing of the faces of a
matroid polytope, and hence no purely combinatorial counterpart of this formula.

The (discrete and algebraic) geometric point of view on matroids, initiated in [36] and [44], has
evolved into a central component of matroid theory thanks to the natural appearances of matroid
polytopes in various settings in optimization, algebraic geometry, and tropical geometry. Theorem
3.3.4 shows that this geometric point of view also plays an essential role here: if one wishes to
fully understand the Hopf algebraic structure of matroids, it becomes indispensable to view them
as polytopes.
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3.3.4. The Hopf algebra of matroids. The Fock functor sends the Hopf monoid M to the
Hopf algebra of (isomorphism classes of) matroids defined by Joni and Rota [60, Section XVII] and
also studied by Schmitt [84, Section 15]. Theorem 3.3.4 answers the open question of determining
the optimal formula for the antipode of a matroid: it is simply the signed sum of the faces of the
matroid polytope.

Theorem 3.3.5. In the Hopf algebra of (isomorphism classes of) matroids, the antipode of a
matroid m is

(42) s(m) =
∑
n

(−1)c(n)a(m : n)n,

where c(n) is the number of components of a matroid n and a(m : n) is the number of faces of the
matroid polytope P(m) which are congruent to P(n).

Proof. This is an immediate consequence of Theorem 3.3.4. �

Example 3.3.6. Let us revisit Example 1.2.2. The formula is the algebraic manifestation of

(( + 5 + 2 8 _s = + _ + 2 

the face structure of the corresponding matroid polytope, which is a square pyramid. It has one
full-dimensional face, 5 two-dimensional faces (in matroid isomorphism classes of sizes 2, 1, 2), 8
edges (in one isomorphism class), and 5 vertices (in one isomorphism class).

Remark 3.3.7. Theorems 3.3.4 and 3.3.5 illustrate an important advantage of working with
Hopf monoids instead of Hopf algebras.

To try to discover (42), we might compute a few small examples and try to find a pattern.
After witnessing unexpected cancellations and unexplained groupings of equal terms, we are left
with coefficients a(m : n) that are very hard to identify; in fact, we do not know any enumerative
properties of these coefficients.

If, instead, we work in the context of Hopf monoids, a coefficient equal to 5 in (42) comes from
a sum 1+1+1+1+1 in (41) where each 1 is indexed combinatorially; this additional granularity
allows us to identify each term contributing to (41), and to then combine them to obtain (42).

However, for matroids, the geometric lens is crucial – even in the context of Hopf monoids. It is
not easy to identify the individual terms of (41) if one is not thinking about the matroid polytope,
whose faces have no simple combinatorial description.

A cancellation-free but not combination-free formula for the antipode of the Hopf algebra of
matroids appears in [25, 24].

3.3.5. Graphical matroids and another Hopf monoid of graphs. Any family of matroids
which is closed under direct sums, restriction, and contraction forms a Hopf submonoid of M. Many
important families of matroids satisfy these properties and have the structure of a Hopf monoid; for
instance: linear matroids over a fixed field, graphical matroids, algebraic matroids over a fixed field,
gammoids, and lattice path matroids [20, 72, 100]. In particular, the Hopf monoid of graphical
matroids is closely related to a third Hopf monoid of graphs, which we now describe.

For a finite set I, let Γ[I] be the set of graphs with edges labeled by I, with unlabeled vertices,
and without isolated vertices. To define a product and coproduct on Γ, let I = S t T be a
decomposition. The product γ1 · γ2 ∈ Γ[I] is the (disjoint) union of the graphs γ1 ∈ Γ[S] and
γ2 ∈ Γ[T ]. The coproduct ∆S,T (γ) = (γ|S , γ/S) is given by the standard notions of restriction and
contraction from graph theory, which are defined as follows. The restriction γ|S ∈ Γ[S] is obtained
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from γ ∈ Γ[I] by removing all edges in T and all vertices not incident to S. The contraction
γ/S ∈ Γ[S] is obtained by contracting each edge e in S from γ ∈ Γ[I] – removing e and identifying
its endpoints – and removing any isolated vertices that remain.

The two Hopf monoids of graphs Γ and G that we have discussed are not directly related; in
fact, they differ already as species. Instead, we have a morphism of Hopf monoids

Γ→ M

mapping each graph γ to its graphical matroid, which is the set of spanning trees of γ [72]. We do
not know further properties of the Hopf monoid Γ, in particular, because we are not aware of any
results on graphical matroid polytopes.

3.4. P: Posets and poset cones

Similarly to graphs and matroids, posets also have a polyhedral model that respects the Hopf
algebra structure introduced by Schmitt in 1994 [84]. We use this geometric model to give an
optimal combinatorial formula for the antipode of posets.

3.4.1. Poset cones. A {0,∞} function on I is a Boolean function z : 2I → {0,∞} such that
z(∅) = z(I) = 0. Its support is supp(z) = {J ⊆ I | z(J) = 0}. For a {0,∞} function z on I,

(43) z is submodular ⇐⇒ if A,B ∈ supp(z) then A ∪B,A ∩B ∈ supp(z).

For each poset p on I we define the lower set function

lowp : 2I 7→ R ∪ {∞}, lowp(J) =

{
0 if J is a lower set of p,
∞ if J is not a lower set of p.

This is an extended submodular function since the family of lower sets of p is closed under unions
and intersections.

By Theorem 3.1.6 and (38), the submodular function lowp gives rise to an extended generalized
permutahedron

P(p) := P(lowp) = {x ∈ RI |
∑
i∈I

xi = 0 and
∑
a∈A

xa ≤ 0 for every lower set A of p}

which we call the poset cone of p. This cone has an elegant description in terms of generators.
Dobbertin proved an analogous result for a related polytope in [33].

Proposition 3.4.1. The poset cone of a poset p is given by

P(p) = cone {ei − ej | i > j in p}

where {ei | i ∈ I} is the standard basis of RI . The generating rays of P(p) are given by the roots
ei − ej corresponding to the cover relations im j of p.

Proof. Recall the notation

x(A) =
∑
i∈A

xi

for x ∈ RI and A ⊆ I. We prove both containments:

⊇: Let i > j in p. Every order ideal A that contains i must also contain j, so ei − ej satisfies
x(A) ≤ 0. This implies that cone{ei − ej | i > j ∈ p} ⊆ P(p).

⊆: We will need the following lemma.
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Lemma 3.4.2. Let x ∈ P(p). Let i be a maximal element of p such that xi 6= 0, and let i1, . . . , ik
be the elements covered by i in p. We can write

x = x′ + λ(ei − ej)
for some x′ ∈ P(p), some element j l i, and some number λ > 0 which is a linear combination of
the xis.

Proof of Lemma 15.2. The maximality of i and the fact that p≥i := {j ∈ p | j ≥ i} is an
upper set imply that

(44) xi =
∑
j∈p≥i

xj = x(p≥i) > 0.

Let i1, . . . , ik be the elements covered by i in p. We claim that

(45) there exists an index 1 ≤ a ≤ k with x(Ia) < 0 for every lower set Ia 3 ia .
We prove this claim by contradiction. If that was not the case, then for every 1 ≤ a ≤ k we

would have a lower set Ia 3 ia such that x(Ia) = 0. Now, we observe that

(46) if A and B are lower sets with x(A) = x(B) = 0, then x(A ∪B) = x(A ∩B) = 0.

This observation follows from the fact that A∪B and A∩B are lower sets, so they satisfy x(A∪B) ≤
0 and x(A ∩B) ≤ 0, while also satisfying x(A ∪B) + x(A ∩B) = x(A) + x(B) = 0. Applying (46)
repeatedly, we see that I1 ∪ · · · ∪ Ik is a lower set with x(I1 ∪ · · · ∪ Ik) = 0. But then we observe
that I1 ∪ · · · ∪ Ik ∪ i is also a lower set, so we get

xi = x(I1 ∪ · · · ∪ Ik ∪ i) ≤ 0,

contradicting (44).
Having proved (44) and (45), let 1 ≤ a ≤ k be as in (45). Then

λ := min({xi} ∪ {−x(Ia) | Ia is a lower set containing ia}) > 0,

and define x′ = x− λ(ei − eia) as required. To conclude, it remains to prove that y ∈ P(p). To do
this, let J be any lower set of p. If J contains both ia and i, or if it contains neither ia nor i, then
we have x′(J) = x(J) ≤ 0. On the other hand, if J contains ia but not i, then x′(J) = x(J)+λ ≤ 0
by the definition of λ, since J is a lower set containing ia. It follows that x′ ∈ P(p), concluding the
proof of the lemma. �

Now we need to prove that any x ∈ P(p) is a positive linear combination of vectors of the form
ei − ej such that i < j in p. Since the rationals are a dense subset of the reals and the cones we
are considering are closed, it suffices to prove this when all entries of x are rational. We proceed
by induction on the number of positive entries of x.

Let i be a maximal element of p with xi > 0. Write x = x′+λ(ei− ej) for λ > 0 and im j as in
the lemma, and note that x′i < xi. If x′i > 0, use the lemma again to write x′ = x′′+λ′(ei− ej′) for
λ′ > 0 and i m j′, and note that x′′i < x′i < xi . We can continue applying the lemma in this way

while x
′′···′
i > 0. In each step, the ith coordinate decreases by a positive linear combination of the

original xis. Since the xis are rational, the ith coordinate is decreasing discretely, and must reach 0
eventually. We will then have written x = y+c for a linear combination c ∈ cone{ei−ej | i > j ∈ p}
and a vector y ∈ P(p) with one fewer positive entry, since yi = 0. The induction hypothesis now
gives y ∈ cone{ei − ej | i > j ∈ p}, which implies x ∈ cone{ei − ej | i > j ∈ p} as well. The desired
result follows by induction.

Having proved that P(p) is generated by the vectors ei − ej where i > j, let us observe that
if i > j then there is a sequence of cover relations i m k1 m · · · m kr m j, which implies that
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ei− ej = (ei− ek1) + (ek1 − ek2) + · · ·+ (ekr − ej). Therefore the vectors ei− ej with im j generate
P(p). By a similar argument one sees that they generate P(p) irredundantly. �

The faces of poset polytopes were described (for the cones dual to poset cones) by Postnikov-
Reiner-Williams [76, Proposition 3.5] (for order polytopes) by Geissinger [43] and Stanley [90],
and (for oriented matroids) by Las Vergnas [Proposition 9.1.2][18]. Our presentation follows Las
Vergnas, interpreting his general criterion in this special case.

Define a circuit of p to be a cyclic sequence i1, . . . , in of elements of p where every consecutive
pair is comparable in p. Circuits consist of up-edges where ij < ij+1 in p and down-edges where
ij > ij+1 in p. We will say that a subposet q of p is positive2 if the following conditions hold for
every circuit X:

(1) if all the down-edges of a circuit X are in q, then all the up-edges of X are in q, and
(2) if all the up-edges of a circuit X are in q, then all the down-edges of X is in q.

Lemma 3.4.3. Let p be a poset on I. The faces of the poset cone P(p) ⊆ RI are precisely the
poset cones P(q) as q ranges over the positive subposets of p.

Proof. In this proof we will assume some basic facts about oriented matroid theory; see
[19, 9] for the relevant definitions. Let M be the (acyclic) oriented matroid of the set of vectors
{ei− ej | i > j in p}. The faces of the poset cone P(p) are the cones generated by the positive flats
of the Las Vergnas face lattice ofM. By [19, Proposition 9.1.2], these are the subsets F ofM such
that for every signed circuit X of M, X+ ⊆ F implies X− ⊆ F .

The oriented matroid M is isomorphic to the graphical oriented matroid of the graph of p on
I, whose directed edges i → j correspond to the order relations i > j in p. Therefore the signed
circuits of M correspond to the cycles of the graph; they are the sets of the form:

X = {eik − eik+1
| i1, . . . , in is a circuit of p}

where in+1 = i1. Each circuit X comes with two orientations. One of them is given by X+ =
{eik−eik+1

| ik > ik+1 in p} and X− = {eik−eik+1
| ik < ik+1 in p} and the other one is its reverse.

Now let F = q ⊆ p be a subposet of p. In the first orientation of X, the condition that X+ ⊆ F
implies X− ⊆ F says that if every down-edge is in q then every up-edge must be in q. In the other
orientation, this condition is reversed. It follows that the positive flats of M are in bijection with
the positive subposets of p, as desired. �

Example 3.4.4. Let p be the poset on {a, b, c, d} given by the cover relations a < c, b < c, a <
d, b < d. The poset cone of p is shown in Figure 3. The positive subposets q 6= p are those which
do not contain both vertical cover relations a < c and b < d, and do not contain both diagonal
cover relations a < d and b < c. There are nine such subposets, corresponding to the nine proper
faces of P(p).

Remark 3.4.5. Let us give some additional intuition for the definition of positive subposets.
We will need preposets; see Section 3.4.4 for a definition.

A poset contraction is a preposet obtained from p by successively contracting order relations
i < j of p and replacing them by equivalence relations i ∼ j. Since we need to keep the preposet
transitive, contracting the up-edges of a circuit forces us to also contract the down-edges, and
viceversa. For instance, in Example 3.4.4, if we contract a < c and b < d, we get the contradictory
relations a ∼ c > b ∼ d > a; to remedy this, we are forced to contract b < c and a < d into b ∼ c
and a ∼ d as well.

2this terminology comes from the theory of oriented matroids
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a

b

d

c

Figure 3. The poset cone for the poset of Example 15.4.

In conclusion, the positive subposets of p are precisely the contracted subposets for the con-
tractions of p.

3.4.2. Posets as a submonoid of extended generalized permutahedra. Recall that
P is the Hopf monoid (in vector species) of posets. For I = S t T , the product of two posets
p1 on S and p2 on T is their disjoint union p1 · p2 regarded as a poset on I. The coproduct
∆S,T : P[I]→ P[S]⊗P[T ] is

∆S,T (p) =

{
p|S ⊗ p|T if S is a lower set of p,

0 otherwise.

Proposition 3.4.6. The map low : P → SF+ ∼=−→ GP+ is an injective morphism of Hopf
monoids in vector species.

Proof. To check that low preserves the product, let I = S t T be a decomposition. Let p1

and p2 be posets on S and T , and p1 · p2 be their product. A subset J ⊆ I is a lower set of p1 · p2

if and only if J ∩ S and J ∩ T are lower sets of p1 and p2, respectively. It follows that

lowp1·p2(J) = lowp1(J ∩ S) + lowp2(J ∩ T ) = (lowp1 · lowp2)(J),

so low preserves products.
To check that low preserves the coproduct, let I = S t T and let p be a poset on I. We need

to consider two cases:
1. Suppose S is not a lower set of p. Then ∆S,T (p) = 0. In this case we also have lowp(S) =∞

so ∆S,T (lowp) = 0 by the definition of the coproduct in SF+. It follows that low trivially respects
the coproduct in this case.

2. Suppose S is a lower set of p. Then the restriction and contraction of p with respect to S are
p|S and p|T , respectively. Also lowp(S) = 0. To see that low is compatible with restriction, notice
that for R ⊆ S we have (lowp)|S(R) = lowp(R), so

lowp|S (R) =

{
0 if R is a lower set of p|S
∞ otherwise

, (lowp)|S(R) =

{
0 if R is a lower set of p

∞ otherwise.

Since R is a lower set of p|S if and only if it is a lower set of p, we have lowp|S = (lowp)|S .
On the other hand, to see that low is compatible with contraction, notice that for R ⊆ T we

have lowp/S (R) = lowp|T (R) = lowp(R) and (lowp)/S(R) = lowp(R ∪ S), so

lowp/S (R) =

{
0 if R is a lower set of p|T
∞ otherwise

, (lowp)/S(R) =

{
0 if R ∪ S is a lower set of p

∞ otherwise.
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Since R is a lower set of p|T if and only if it R ∪ S is a lower set of p, we have lowp/S = (lowp)/S .
We conclude that low is a morphism of monoids. Injectivity follows from the fact that we can

recover a poset p from its collection of lower sets as follows: two elements i, j of p satisfy i < j if
and only if every lower set containing j also contains i. �

3.4.3. The antipode of posets. In view of Proposition 3.4.6 and Theorem 1.6.1, the antipode
of P is given by the facial structure of poset polytopes, as described in Lemma 3.4.3. This allows
us to give the optimal combinatorial formula for the antipode of the Hopf monoid of posets.

Recall that the Hasse diagram of a poset p is the graph whose vertices correspond to the
elements of p and whose edges x→ y, which are always drawn with x lower than y, correspond to
the cover relations xl y of p.

Corollary 3.4.7. The antipode of the Hopf monoid of posets P is given by the following
cancellation-free and combination-free expression. If p is a poset on I then

sI(p) =
∑
q

(−1)c(q)q,

summing over all positive subposets q of p, where c(q) is the number of connected components of
the Hasse diagram of q.

Proof. This follows from Theorem 1.6.1 and Lemma 3.4.3, and the observation that the di-
mension of the poset cone P(p) is |I| − c(p). �

Example 3.4.8. Let us revisit Example 1.2.3. This example takes place in the Hopf algebra of
posets P , where isomorphic posets are identified. The formula

( ( + 2 +  + 2 4 _s = _

is the algebraic manifestation of the face structure of the corresponding poset cone, which is the
cone over a square shown in Figure 3. It has one full-dimensional face, 4 two-dimensional faces
(in poset isomorphism classes of sizes 2 and 2), 4 rays (in one isomorphism class), and 1 vertex.
Combinatorially, the summands correspond to the positive subposets of the poset in question, as
described in Example 3.4.4.

3.4.4. Preposets and preposet cones. One may wonder whether there are other interesting
submonoids of GP consisting of cones, or (almost equivalently) submonoids of SF consisting of
{0,∞} functions. In Theorem 3.4.9 and Proposition 3.4.6 we show that, essentially, there aren’t.
We prove that {0,∞} submodular functions are equivalent to the slightly larger class of preposets,
which may be viewed as posets in their own right.

A preposet on I is a binary relation q ⊆ I × I, denoted ≤, which is reflexive (x ≤ x for all
x ∈ q) and transitive (x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ q). A preposet is not necessarily
antisymmetric, and we define an equivalence relation by setting

x ∼ y when x ≤ y and y ≤ x.
Let p = q/∼ be the set of equivalence classes of p. The relation ≤ induces a relation ≤ on q/∼
which is still reflexive and transitive, and is also antisymmetric; i.e., it defines a poset.

It follows that we may think of preposets as posets whose elements are labeled by nonempty
and pairwise disjoint sets. More precisely, we may equivalently define a preposet on I to be a set
partition π = {I1, . . . , Ik} of I together with a poset p on π.



3.4. P: POSETS AND POSET CONES 69

If p′ is a lower set of the poset p = q/∼, then we say q′ =
⋃
K∈p′ K is a lower set of the preposet

q. As before, we define the lower set function of q to be

lowq : 2I 7→ R ∪ {∞}, lowq(J) =

{
0 if J is a lower set of q,
∞ otherwise.

Theorem 3.4.9. A Boolean function z : I → {0,∞} is submodular if and only if z = lowq is
the lower set function of a preposet q on I.

Proof. The backward direction is straightforward: If q is a preposet then its collection of lower
sets is closed under union and intersection. It follows from (43) that lowq is submodular.

The forward direction will require more work. Suppose z is a submodular {0,∞} function on
I and let

L := supp(z).

We need to show that L is the collection of lower sets of a preposet q on I.
Thanks to (43) we know that L = supp(z) is a lattice under the operations of union and

intersection. These operations are distributive, so Birkhoff’s fundamental theorem of distributive
lattices [93, Theorem 3.4.1] applies: If Lirred is the subposet of join-irreducible elements of L, and
if J(Lirred) is the poset of lower sets of Lirred ordered by inclusion, then

L ∼= J(Lirred).

We reinterpret Lirred as a preposet on I as follows. For each set A ∈ Lirred let

ess(A) = A−
⋃

B∈Lirred
B<A

B.

be the essential set of A, consisting of the essential elements which are in no lesser join-irreducible.
Consider the collection of essential sets

q := {ess(A) | A ∈ Lirred},

endowed with the partial order inherited from Lirred. We will now show that:
1. q is a preposet on I, and
2. L is the collection of lower sets of q.

These two statements will complete the proof.
Before we prove these two statements, let us illustrate this construction with an example. The

left panel of Figure 4 shows a distributive lattice L of subsets of I = {a, b, c, d, e, f, g, h, i, j}. We only
label the join-irreducible elements; the label of every other set is the union of the join-irreducibles
less than it in L. The right hand side panel shows the subposet Lirred. For each join-irreducible
set A ∈ Lirred we have indicated its essential set ess(A) in bold. These essential sets partition I,
allowing us to think of this object q as a preposet on I.

Step 1. q is a preposet on I: We need to show that the sets in q form a set partition of I. Each
essential set ess(A) is nonempty because A is join-irreducible. To prove that the essential sets are
pairwise disjoint, assume contrariwise that x ∈ ess(A) and x ∈ ess(B) for some A 6= B ∈ Lirred.
Then A∩B ∈ L and x ∈ A∩B, so x ∈ C for some join irreducible C ∈ Lirred with C ⊆ A∩B ( A.
This contradicts the assumption that x is an essential element of A.

The following lemma completes the proof of Step 1.
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cfba

abhj

abcfhij

cdefg
cfba

abhj

abcfhij

cdefg

Figure 4. A distributive lattice L of subsets of I = {a, b, c, d, e, f, g, h, i, j} and its
poset of join-irreducibles. The essential sets of Lirred are shown in boldface; they
give rise to a preposet q on I, whose lower sets are precisely the sets in L.

Lemma 3.4.10. For all A ∈ L,

A =
⊔

B∈Lirred
B≤A

ess(B).

In particular, {ess(B) | B ∈ Lirred} is a partition of I.

Proof of Lemma 3.4.10. First we prove that the lemma holds for each join-irreducible A ∈
Lirred ⊆ L, proceeding by induction. This statement is clearly true for the minimal elements of
Lirred. Also, if it holds for all elements B < A in Lirred, then using the definition of ess(A) and the
induction hypothesis,

A = ess(A) t
⋃

B∈Lirred
B<A

B = ess(A) t
⋃

B∈Lirred
B<A

⊔
C∈Lirred
C≤B

ess(C) =
⊔

C∈Lirred
C≤A

ess(C)

so the claim holds for A as well. Therefore the lemma holds for all A ∈ Lirred.
Now we can prove Lemma 3.4.10 holds for all A ∈ L. The backward inclusion is clear. To prove

the forward inclusion, let x ∈ A. Since A is the union of the join-irreducibles less than it in L, we
have x ∈ C for some C ∈ Lirred with C ≤ A. By the previous paragraph, x ∈ ess(D) for some
D ∈ Lirred with D ≤ C; but then D ≤ A also, so x is in one of the essential sets on the right hand
side. The desired result follows.

The last statement follows by recalling that z(I) = 0 and applying the lemma to A = I, which
is the maximum element of the lattice L. This completes the proof of Lemma 3.4.10 and of Step 1
of this proof. �

Step 2. L is the collection of lower sets of q: By Birkhoff’s theorem and Lemma 3.4.10, A ∈ L if
and only if there is a down set J ⊆ Lirred with

A =
⋃
B∈J

B =
⊔
B∈J

ess(B);

that is, if and only if A is a lower set of q. �

We now state an algebraic counterpart of Theorem 3.4.9. Let Q[I] be the set of preposets on I.
Preposets become a Hopf monoid in vector species Q with the same operations of the Hopf monoid
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of posets P. Let SF{0,∞} be the submonoid of SF consisting of {0,∞} functions. Let GPcone be

the submonoid of GP consisting of cones.

Proposition 3.4.11. The maps low : Q
∼=−→ SF{0,∞}

∼=−→ GPcone are isomorphisms of Hopf
monoids in vector species.

Proof. The first isomorphism is an immediate consequence of Theorem 3.4.9. For the second
one, notice that every cone c ∈ GP is a translate of a unique cone c′ that contains the origin. The
submodular function zc such that c′ = P(zc) is a {0,∞} function, and the correspondence c 7→ zc
gives the desired isomorphism. �

In the correspondence between preposets and generalized permutahedra which are cones, posets
on I correspond to cones of the maximum possible dimension |I| − 1. The antipode formula for
preposets Q is essentially the same as the antipode formula for posets P.





CHAPTER 4

Characters, polynomial invariants, and reciprocity

4.1. Invariants of Hopf monoids and reciprocity

Once again, we set aside the combinatorial examples of earlier sections and return to the general
setting of Hopf monoids of Section 1.1, where we begin to develop the basics of character theory.
Similar results for Hopf algebras can be found in [1, 17].

This section shows that each character on a Hopf monoid gives rise to an associated polynomial
invariant. There are two main results. Proposition 4.1.1 shows that the polynomial invariant is
indeed polynomial and invariant. Proposition 4.1.5 relates the values of the invariant on an integer
and on its negative by means of the antipode of the Hopf monoid.

This abstract framework has concrete combinatorial consequences. For instance, we will see
in Section 4.3 that the simplest non-zero characters on the Hopf monoids G,P,M give rise to
three important combinatorial polynomials: the chromatic polynomial of a graph, the strict order
polynomial of a poset, and the BJR polynomial of a matroid. Furthermore, this Hopf-theoretic
framework shows that the celebrated reciprocity theorems for these three polynomials, due to
Stanley [89, Theorem 1.2], [87, Theorem 3] and Billera, Jia, and Reiner [17, Theorem 6.3], are
specific instances of the same general fact about extended generalized permutahedra.

4.1.1. The polynomial invariant of a character. Recall from Section 2.1 the notion of a
character ζ on a Hopf monoid in vector species H. In the examples that interest us, H is a Hopf
monoid coming from a family of combinatorial objects, and ζ is a multiplicative function on our
objects which is invariant under relabelings of the ground set.

Throughout this section, we fix a connected Hopf monoid H and a character ζ : H→ k. Define,
for each element x ∈ H[I] and each natural number n ∈ N, the scalar

(47) χI(x)(n) :=
∑

I=S1t···tSn

(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(x),

summing over all decompositions of I into n disjoint subsets which are allowed to be empty. For
fixed I and x, the function χI(x) is defined for n ∈ N and takes values on k. Note that

(48) χI(x)(0) =

{
ζ∅(x) if I = ∅,
0 otherwise,

χI(x)(1) = ζI(x).

Proposition 4.1.1. (Polynomial invariants) Let H be a connected Hopf monoid, ζ : H→ k be
a character, and χ be defined by (47). Fix a finite set I and an element x ∈ H[I].

(1) For each n ∈ N we have

χI(x)(n) =

|I|∑
k=0

χ
(k)
I (x)

(
n

k

)
73
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where, for each k = 0, . . . , |I|,

χ
(k)
I (x) =

∑
(T1,...,Tk)�I

(ζT1 ⊗ · · · ⊗ ζTk) ◦∆T1,...,Tk(x) ∈ k.

summing over all compositions (T1, . . . , Tk) of I. Therefore, χI(x) is a polynomial function
of n of degree at most |I|.

(2) Let σ : I → J be a bijection, x ∈ H[I] and y := H[σ](x) ∈ H[J ]. Then χI(x) = χJ(y).

Proof. 1. Given a decomposition I = S1 t · · · t Sn, let (T1, . . . , Tk) be the composition of
I obtained by removing the empty Sis and keeping the remaining ones in order. In view of the
unitality of ∆ and ζ, we have

(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(x) = (ζT1 ⊗ · · · ⊗ ζTk) ◦∆T1,...,Tk(x).

Note that k ≤ |I| and the number of decompositions I = S1 t · · · t Sn which give rise to a given
composition (T1, . . . , Tk) is

(
n
k

)
. It follows that

χI(x)(n) =

|I|∑
k=0

( ∑
(T1,...Tk)�I

(ζT1 ⊗ · · · ⊗ ζTk) ◦∆T1,...,Tk(x)

)(
n

k

)
.

as desired. Since each
(
n
k

)
is a polynomial function of n of degree k, χI(x) is polynomial of degree

at most |I|.
2. This follows from the naturality of ∆ and ζ. �

Let k[t] denote the polynomial algebra. Proposition 4.1.1 states that each character ζ gives
rise to a family of polynomials χI(x) ∈ k[t] associated to each structure x ∈ H[I], whose values
on nonnegative integers n are given by (47). Furthermore, it says that two isomorphic structures
have the same associated polynomial. Thus, the function χI(x) is a polynomial invariant of the
structure x (canonically associated to the Hopf monoid H and the character ζ).

4.1.2. Properties of the polynomial invariant of a character. We now collect some
useful properties of these polynomial invariants.

Proposition 4.1.2. Let H be a connected Hopf monoid, ζ : H → k be a character, and χ be
the associated polynomial invariant, defined by (47). Let I be a finite set.

(i) χI is a linear map from H[I] to k[t].
(ii) Let I = S t T be a decomposition. For any x ∈ H[S] and y ∈ H[T ], we have the equality

of polynomials

χI(x · y) = χS(x)χT (y)

(iii) χ∅(1) = 1, the constant polynomial.
(iv) For any x ∈ H[I] and scalars n and m,

χI(x)(n+m) =
∑

I=StT
χS(x|S)(n)χT (x/S)(m).

Proof. Property (i) follows from the linearity of ∆ and ζ.
Property (ii) follows from the compatibility between µ and ∆ and the multiplicativity of ζ. We

provide the details. First, decompositions I = I1 t · · · t In into n parts are in bijection with pairs
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of decompositions S = S1 t · · · t Sn and T = T1 t · · · t Tn, where Si = Ii ∩ S and Ti = Ii ∩ T .

'

&

$

%

S

T

'

&

$

%
I1 · · · In

'

&

$

%

· · ·

· · ·

S1 Sn

T1 Tn

The compatibility between µ and ∆ and the associativity of the latter imply that if we write

∆S1,...,Sn(x) =
∑

x1 ⊗ · · · ⊗ xn and ∆T1,...,Tn(y) =
∑

y1 ⊗ · · · ⊗ yn,

in Sweedler’s notation, as described in Section 1.1.5, then

∆I1,...,In(x · y) =
∑

(x1 · y1)⊗ · · · ⊗ (xn · yn)

The above, together with the multiplicativity of ζ, yield that χI(x · y)(n) equals∑
I=I1t···tIn

(ζI1 ⊗ · · · ⊗ ζIn) ◦∆I1,...,In(x · y)

=
∑

S=S1t···tSn
T=T1t···tTn

∑
ζI1(x1 · y1) · · · ζIn(xn · yn) =

∑
S=S1t···tSn
T=T1t···tTn

∑
ζS1(x1)ζT1(y1) · · · ζSn(xn)ζTn(yn)

=
( ∑
S=S1t···tSn

(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(x)
)( ∑

T=T1t···tTn

(ζT1 ⊗ · · · ⊗ ζTn) ◦∆T1,...,Tn(y)
)

= χS(x)(n)χT (y)(n).

Thus χI(x · y) = χS(x)χT (y) as polynomials, since they agree at every natural number n.
Property (iii) follows from unitality of ∆ and ζ.
For property (iv), note that decompositions of I into n+m parts are in bijection with tuples

(S, S1, . . . , Sn, T, T1, . . . , Tm)

where I = S t T , S = S1 t · · · t Sn, and T = T1 t · · · t Tm. In addition, associativity of ∆ implies
that

∆S1,...,Sn,T1,...,Tm =
(
∆S1,...,Sn ⊗∆T1,...,Tm

)
◦∆S,T .

Therefore, χI(x)(n+m) is equal to∑
I=S1t···tSntT1t···tTm

(ζS1 ⊗ · · · ⊗ ζSn ⊗ ζT1 ⊗ · · · ⊗ ζTm) ◦∆S1,...,Sn,T1,...,Tm(x)

=
∑

I=StT

∑
S=S1t···tSn
T=T1t···tTm

(ζS1 ⊗ · · · ⊗ ζSn ⊗ ζT1 ⊗ · · · ⊗ ζTm) ◦
(
∆S1,...,Sn ⊗∆T1,...,Tm

)
◦∆S,T (x)

=
∑

I=StT

∑
S=S1t···tSn
T=T1t···tTm

(
(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(x|S)

)(
(ζT1 ⊗ · · · ⊗ ζTm) ◦∆T1,...,Tm(x/S)

)
=

∑
I=StT

χS(x|S)(n)χT (x/S)(m).
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The above yields the desired equality when n and m are nonnegative integers. Since both sides
of the equation are polynomial functions of (n,m) in view of Proposition 4.1.1, the result then
follows for arbitrary scalars n and m. �

The following result states that if two characters are related by a morphism of Hopf monoids,
then the same relation holds for the corresponding polynomial invariants.

Proposition 4.1.3. Let H and K be two Hopf monoids. Suppose ζH is a character on H, ζK

is a character on K, and f : H→ K is a morphism of Hopf monoids such that

ζKI
(
fI(x)

)
= ζHI (x)

for every I and x ∈ H[I]. Let χH and χK be the polynomial invariants corresponding to ζH and
ζK, respectively. Then

χK
I

(
fI(x)

)
= χH

I (x)

for every I and x ∈ H[I].

Proof. Since f preserves coproducts, we have ∆S,T

(
fI(x)

)
= (fS⊗fT )

(
∆S,T (x)

)
and a similar

fact for iterated coproducts. This and the hypothesis give the result. �

Remark 4.1.4. Most of the results in this section hold under weaker hypotheses (different ones
for each result). For instance, Proposition 4.1.1 holds for any collection of linear maps ζI : H[I]→ k
which is unital (with the same proof). If n and m are nonnegative integers, statement (iv) in
Proposition 4.1.2 holds for any collection of linear maps ζI : H[I]→ k. Proposition 4.1.3 holds for
any morphism of comonoids which preserves the characters.

4.1.3. From Hopf monoids to reciprocity theorems. For a character ζ on a Hopf monoid
H, the construction of Section 4.1.1 produces a polynomial invariant χ whose values on natural
numbers are well understood in terms of H and ζ. What about the values on negative integers?
The antipode provides an answer to this question.

Proposition 4.1.5. (Reciprocity for polynomial invariants) Let H be a connected Hopf monoid,
ζ : H → k be a character, and χ be the associated polynomial invariant, defined by (47). Let s be
the antipode of H. Then

(49) χI(x)(−1) = ζI
(
sI(x)

)
.

More generally, for every scalar n,

(50) χI(x)(−n) = χI
(
sI(x)

)
(n).

Proof. Since
(−1
k

)
= (−1)k, Proposition 4.1.1 implies

χI(x)(−1) =

|I|∑
k=0

( ∑
(T1,...Tk)�I

(ζT1 ⊗ · · · ⊗ ζTk) ◦∆T1,...,Tk(x)

)
(−1)k.

Using multiplicativity of ζ and Takeuchi’s formula (5), this may be rewritten as

χI(x)(−1) =

|I|∑
k=0

( ∑
(T1,...Tk)�I

ζI ◦ (µT1 ⊗ · · · ⊗ µTk) ◦∆T1,...,Tk(x)

)
(−1)k

= ζI

(∑
k≥0

(−1)k
∑

(T1,...Tk)�I

µT1,...,Tk ◦∆T1,...,Tk(x)

)
= ζI

(
sI(x)

)
,
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which proves (49).
To prove (50) one may assume that the scalar n is a nonnegative integer, since both sides are

polynomial functions of n. We make this assumption and proceed by induction on n ∈ N.
When n = 0 the result holds in view of (48) and the fact that s∅ = id. When n = 1 it follows

from (48) and (49). For n ≥ 2 we apply Proposition 4.1.2(iv) as follows:

χI(x)(−n) = χI(x)(−n+ 1− 1) =
∑

I=StT
χS(x|S)(−n+ 1)χT (x/S)(−1).

Using the induction hypothesis, and then reversing the roles of S and T , this equals∑
I=StT

χS
(
sS(x|S)

)
(n− 1)χT

(
sT (x/S)

)
(1) =

∑
I=StT

χS
(
sS(x/T )

)
(1)χT

(
sT (x|T )

)
(n− 1).

Applying Proposition 4.1.2(iv) to sI(x), and using the fact (7) that the antipode reverses coprod-
ucts, we see that this equals

χI
(
sI(x)

)
(1 + n− 1) = χI

(
sI(x)

)
(n),

as needed. �

Formulas (49) and (50) are reciprocity results of a very general nature. They gives us another
reason to be interested in an explicit antipode formula: such a formula allows for knowledge of
the values of all polynomial invariants at negative integers. The antipode acts as a universal
link between the values of the invariants at positive and negative integers. We now apply this
approach to GP in Section 4.2. This will allow us to unify several important reciprocity results in
combinatorics and to obtain new ones in Section 4.3.

4.2. The basic character and the basic invariant of GP

In this section we return to specifics, focusing on the Hopf monoids of generalized permutahedra
GP and GP+. We will prove the results in this section for GP but they also hold in GP+; see
Remark 4.2.6.

We introduce the (almost trivial) basic character β and its associated basic invariant χ on the
Hopf monoid of generalized permutahedra GP. We use the algebraic structure of GP and β to
obtain combinatorial formulas for χ(n) and χ(−n) for n ∈ N in Propositions 4.2.3 and 4.2.4; these
were also obtained in [17]. In Section 4.3 we will see that several important combinatorial facts
about graphs, posets, and matroids are straightforward consequences of this setup.

Definition 4.2.1. The basic character β of GP is given by

βI(p) =

{
1 if p is a point

0 otherwise.

for a generalized permutahedron p ∈ RI . The basic invariant χ of GP is the polynomial invariant
associated to β by Proposition 4.1.1 and (47).

Note that β is indeed a character because the product of two polytopes p× q is a point if and
only if both p and q are points.
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a

b

d

c

Figure 1. The y-generic faces of the permutahedron π4 for y = (0, 1, 1, 0) are shaded.

4.2.1. A lemma on directionally generic faces. Given a generalized permutahedron p ⊆
RI and a linear functional y ∈ RI , say p is directionally generic in the direction of y if the y-maximal
face py is a point. If this is the case, we will also say that y is p-generic and that p is y-generic.
See Figure 1.

We will need the following technical lemma about directionally generic faces.

Lemma 4.2.2. For any generalized permutahedron p ⊆ RI and linear functional y ∈ RI , the
following equations hold as formal sums of polytopes.

(1) ∑
q≤p

(−1)dim qqy =
∑

q≤p−y

(−1)dim qq

(2) ∑
q≤p:

y is q-generic

(−1)dim q = (−1)|I| (number of vertices of p−y).

Proof. 1. Let us express both sides of the equation Hopf-theoretically. Let F be the face of the
braid arrangement that y belongs to, and say it corresponds to the decomposition I = S1t· · ·tSk,
as described in Section 1.3.5. Also recall from Section 1.1.9 that we denote µF = µS1,...,Sk , ∆F =
∆S1,...,Sk , and sF = sS1 ⊗ · · · ⊗ sSk .

For any generalized permutahedron r ⊆ RI we have ry = rF = µF∆F (r) by Proposition 1.4.4.
It then follows from the formula for the antipode of GP in Theorem 1.6.1 that

(−1)|I|µF∆F sI(p) =
∑
q≤p

(−1)dim qqy.

Now let F be the opposite face of F , corresponding to the decomposition I = Sk t · · · t S1. Then
F contains −y so µF∆F (p) = p−y, and

(−1)|I| sI µF∆F (p) =
∑

q≤p−y

(−1)dim qq.

To prove that these expressions equal each other, recall Proposition 1.1.16, which holds for any
Hopf monoid in vector species:

sI µF = µF sF swF , ∆F sI = sF swF ∆F .
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where we have rewritten the first equation, using that sF swF = swF sF . Applying the second

equation to F and then the first equation to F , we obtain

µF∆F sI = µF sF swF ∆F = sI µF∆F ,

which gives the desired result.

2. This follows by applying the character χI to both sides of the equation of part 1. �

4.2.2. The basic invariant and the basic reciprocity theorem of GP. Recall that the
basic invariant χ of GP is the polynomial invariant that Proposition 4.1.1 associates to the basic
character β of Definition 4.2.1.

Proposition 4.2.3. [17, Def. 2.3, Thm 9.2.(v)] At a natural number n, the basic invariant χ
of a generalized permutahedron p ⊆ RI is given by

χI(p)(n) = (number of p-generic functions y : I → [n]).

Proof. First notice that each summand in (47) comes from a decomposition I = S1t · · ·tSn,
which bijectively corresponds to a function y : I → [n] defined by y(i) = k for each i ∈ Sk. The
corresponding summand for χI(p)(n) is

(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(p) = ζS1(p1) · · · ζSn(pn)

where the y-maximal face py factors as py = p1 × · · · × pn for pi ∈ RSi. This term contributes to
the sum if and only if every pi is a point, that is, if and only if py is a point; and in that case, it
contributes 1. The desired result follows. �

Proposition 4.2.4. [17, Theorems 6.3 and 9.2.(v)] (Basic invariant reciprocity.) At a negative
integer −n, the basic invariant χ of a generalized permutahedron p ⊆ RI is given by

(−1)|I|χI(p)(−n) =
∑

y:I→[n]

(number of vertices of py)

where py is the y-maximum face of p.

Proof. Using the general reciprocity formula for characters of Proposition 4.1.5 and the for-
mula for the antipode of Theorem 1.6.1 of GP we obtain

χI(p)(−n) = χI(sI(p))(n) = (−1)|I|
∑
q≤p

(−1)dim qχI(q)(n).

Proposition 4.2.3 and Lemma 4.2.2 then give

χI(p)(−n) = (−1)|I|
∑
q≤p

(−1)dim q(# of q-generic functions y : I → [n])

= (−1)|I|
∑

y:I→[n]

∑
q≤p:

y is q-generic

(−1)dim q =
∑

y:I→[n]

(number of vertices of p−y).

This gives the desired result since p−y = p(n+1,...,n+1)−y, and (n+ 1, . . . , n+ 1)− y maps I to [n] if
and only if y maps I to [n]. �

Remark 4.2.5. Propositions 4.2.3 and 4.2.4 were also obtained by Billera, Jia, and Reiner in
[17]; their proof of the basic invariant reciprocity of Proposition 4.2.4 relies on Stanley’s combi-
natorial reciprocity theorem for P -partitions. Our approach is different: we choose to give Hopf-
theoretic proofs of these results. This will allow us to give straightforward derivations of various
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combinatorial reciprocity theorems, using only the Hopf-theoretic structure of GP; we do this in
the following section.

Remark 4.2.6. The results of this section also hold for the Hopf monoid GP+ of possibly
unbounded generalized permutahedra. In that setting, we must set py = 0 whenever the polyhedron
p is unbounded above in the direction of y. For a linear functional y to be p-generic, we must require
that the polyhedron p is bounded above in the direction of y, and that py is a point.

4.3. Combinatorial reciprocity for graphs, matroids, and posets

We now show how characters on Hopf monoids naturally give rise to numerous reciprocity
theorems in combinatorics; some old, some new. We would like to emphasize one benefit of this
approach: this algebraic framework allows us to discover and prove reciprocity theorems automati-
cally. All we have to do is define a character on a Hopf monoid, and the general theory will produce
a polynomial invariant and a reciprocity theorem satisfied by it. In this section we will use some
of the simplest possible characters to obtain several theorems of interest.

The ideas in this section are closely related to those in [1, 17] and in [2, Chapters 11 and 13].

4.3.1. The basic invariant of graphs is the chromatic polynomial. Given a graph g,
an n-coloring of the vertices of g is an assignment of a color in [n] to each vertex of g. A coloring
is proper if any two vertices connected by an edge have different colors.

Proposition 4.3.1. Let ζ be the character on the Hopf monoid of graphs G defined by

ζI(g) =

{
1 if g has no edges, and

0 otherwise.

The corresponding polynomial invariant is the chromatic polynomial, which equals

χI(g)(n) = number of proper colorings of g with n colors.

for n ∈ N.

Proof. The zonotope Zg is a point if and only if g has no edges. Therefore, thanks to the
inclusion Gcop ↪−→ GP of Proposition 3.2.5, when we restrict the basic character β of GP to graphic
zonotopes, we obtain the character ζ of graphs. It follows that χI(g) is the basic invariant of the
graphic zonotope Zg, and Proposition 4.2.3 then tells us that χI(g)(n) is the number of Zg-generic
functions y : I → [n]. By (40), a function y : I → [n] is Zg-generic if and only if y(i) 6= y(j)
whenever {i, j} is an edge of g; that is, if and only if y is a proper coloring of g. The result
follows. �

We say that an n-coloring y of g and an acyclic orientation o of the edges of g are compatible
if we have y(i) ≥ y(j) for every directed edge i→ j in the orientation o.

Corollary 4.3.2. (Stanley’s reciprocity for graphs [89, Theorem 1.2]) Let g be a graph on

vertex set I, and n ∈ N. Then (−1)|I|χI(g)(−n) equals the number of compatible pairs of an n-

coloring and an acyclic orientation of g. In particular, (−1)|I|χI(g)(−1) is the number of acyclic
orientations of g.

Proof. This result is a special case of Proposition 4.2.4. To see this, regard an n-coloring y of
g as a linear functional y : I → [n] on the zonotope Zg. This coloring induces a partial orientation
oy of the edges of g, assigning an edge {i, j} the direction i → j whenever y(i) > y(j). By (40),
the vertices of (Zg)y correspond to the acyclic orientations that extend oy; these are precisely the
acyclic orientations of g compatible with y. �
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4.3.2. The basic invariant of matroids is the Billera-Jia-Reiner polynomial. Given
a matroid m on I, say a function y : I → [n] is m-generic if m has a unique y-maximum basis
{b1, . . . , br} maximizing y(b1) + · · ·+ y(br).

Proposition 4.3.3. Let ζ be the character on the Hopf monoid of matroids M defined by

ζI(m) =

{
1 if m has only one basis, and

0 otherwise.

The corresponding polynomial invariant is the Billera-Jia-Reiner polynomial of a matroid, which
equals

χI(m)(n) := number of m-generic functions y : I → [n]

for n ∈ N.

Proof. The matroid polytope of m is a point if and only if m has only one basis. Therefore,
thanks to the inclusion M ↪−→ GP of Proposition 3.3.3, when we restrict the basic character β of
GP to matroid polytopes, we obtain the character ζ of matroids. It follows that χI(m) The result
now follows by applying Proposition 4.2.3 to matroid polytopes. �

Corollary 4.3.4. (Billera-Jia-Reiner’s reciprocity for matroids [17, Theorem 6.3.]) Let m be
a matroid on I and n ∈ N. Then

(−1)|I|χI(m)(−n) =
∑

y:I→[n]

(number of y-maximum bases of m).

Proof. This is the result of applying Proposition 4.2.4 to matroid polytopes. �

4.3.3. The basic invariant of posets is the strict order polynomial. Given a poset p,
say a map y : p → [n] is order-preserving if y(i) ≤ y(j) whenever i < j in p. Say y is strictly
order-preserving if y(i) < y(j) whenever i < j in p.

Proposition 4.3.5. Let ζ be the character on the Hopf monoid of posets P defined by

ζI(p) =

{
1 if p is an antichain, and

0 otherwise.

The corresponding polynomial invariant is the strict order polynomial, which equals

χI(p)(n) := number of strictly order-preserving maps p→ [n].

for n ∈ N.

Proof. The poset cone P(p) is a point if and only if p is an antichain. Therefore, thanks
to the inclusion P ↪−→ GP+ of Proposition 3.4.6 (see Remark 4.2.6), when we restrict the basic
character β of GP+ to poset cones, we obtain the character ζ of posets. It follows that χI(p)(n)
is the number of P(p)-generic functions y : p→ [n]. Now, thanks to Proposition 3.4.1, the normal
fan to P(p) is a single cone cut out by the inequalities y(i) ≤ y(j) for i > j in p, so the p-generic
functions are precisely the strictly order-reversing maps. It remains to note that there is a natural
bijection between order-reversing maps I → [n] and order-preserving maps I → [n]. �

Corollary 4.3.6. (Stanley’s reciprocity for posets [87, Theorem 3]) Let p be a poset on I and

n ∈ N. Then (−1)|I|χI(p)(−n) is the order polynomial of p, that is,

(−1)|I|χI(p)(−n) = number of order-preserving maps p→ [n].
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Proof. This is a consequence of Proposition 4.2.4 and the following observations. The poset
cone P(p) only has one vertex, namely, the origin. If y : p→ [n] is order-reversing, then there is a
y-maximum face P(p)y, and it contains that single vertex. If y is not order-reversing, then P(p) is
not bounded above in the direction of y. �

4.3.4. The Bergman polynomial of a matroid. A loop in a matroid is an element which
is not contained in any basis.

Definition 4.3.7. The Bergman character γ of the Hopf monoid of matroids M is given by

γI(m) =

{
1 if m has no loops

0 otherwise.

for a matroid m on I. The Bergman polynomial B(m) of a matroid m is the invariant associated
to γ by Proposition 4.1.1 and (47).

Note that γ is indeed a character, because a direct sum of matroids m ⊕ n is loopless if and
only if m and n are both loopless. To study the Bergman polynomial, we need some definitions. A
flat is a set F of elements such that r(F ∪ i) > r(F ) for every i /∈ F . When m is the matroid of a
collection of vectors A in a vector space V , the flats correspond to the subspaces of V spanned by
subsets of A. The flats form a lattice L under inclusion, and the Möbius number µL(0̂, 1̂) of this
lattice (see [6], [93, Chapter 3]) is also called the Möbius number of the matroid µ(m).

We call B(m) the Bergman polynomial because it is related to the Bergman fan

B(m) = {y ∈ RI | my has no loops}
where my is the matroid whose bases are the y-maximum bases of m. Notice that the matroid
polytope of my is the y-maximum face of the matroid polytope of m; that is, P(my) = P(m)y.
Therefore B(m) is a polyhedral fan: it is a subfan of the normal fan of the matroid polytope P(m),
consisting of the faces Nm(n) normal to the loopless faces n of m.

Note also that B(m) is invariant under translation by 1 and under scaling by a positive constant.
Therefore, nothing is lost by intersecting it with the hyperplane

∑
i xi = 0 and the sphere

∑
i x

2
i = 1,

to obtain the Bergman complex B̃(m).
Bergman fans of matroids are central objects in tropical geometry, because they are the tropical

analog of linear spaces [10, 98]. Two central results are the following combinatorial and topological
descriptions.

Theorem 4.3.8. [10] Let m be a matroid of rank r on I. The Bergman fan B(m) has a
triangulation into cones of the braid arrangement BI , consisting of the cones BS1,...,Sr such that
S1 t · · · t Si is a flat of m for i = 1, . . . , r.

Theorem 4.3.9. [10] The Bergman complex of a matroid m of rank r is homeomorphic to a
wedge of (−1)rµ(m) spheres of dimension r − 2, where µ(m) is the Möbius number of m.

We now describe some of the combinatorial properties of the Bergman polynomial. The first
one is essentially equivalent to [23, Example 4.15]. Define a flag of flats of m to be an increasing

chain of flats under containment ∅ = F0 ( F1 ( F2 ( · · · ( Fn−1 ( Fn = 1̂. We call n the length
of the flag. Similarly, a weak flag of flats to be a weakly increasing chain of flats.

Proposition 4.3.10. At a natural number n, the Bergman polynomial B(m) of a matroid m
is given by

B(m)(n) = number of weak flags of flats of m of length n =

r∑
k=0

cd

(
n

d

)
,



4.3. COMBINATORIAL RECIPROCITY FOR GRAPHS, MATROIDS, AND POSETS 83

where cd is the number of flags of flats of m of length d. Its degree is the rank r of m.

Proof. We use the inclusion M ↪−→ GP to proceed geometrically. Let p = P(m) be the matroid
polytope of m. The summand of BI(p)(n) in (47) corresponding to a decomposition I = S1t· · ·tSn
equals

(γS1 ⊗ · · · ⊗ γSn) ◦∆S1,...,Sn(p) = γS1(p1) · · · γSn(pn) = γI(pT1,··· ,Td)

where I = T1 t · · · t Td is the composition obtained by removing all empty parts, and pT1,··· ,Td is
the y-maximal face of p for any y ∈ BT1,...,Td . This term contributes 1 to the sum if pT1,··· ,Td is
loopless and 0 otherwise.

By Theorem 4.3.8, pT1,··· ,Td is loopless if and only if BT1,...,Td is in the Bergman fan of m, and
this is the case if and only if ∅ ( T1 ( T1 ∪T2 ( · · · ( T1 ∪ · · · ∪Td = I is a flag of flats. For fixed n
and d there are cd choices for that flag of flats, and

(
n
d

)
ways to enlarge the resulting composition

I = T1 t · · · t Td into a decomposition I = S1 t · · · t Sn by adding empty parts. This results in a
weak flag of flats ∅ ⊆ S1 ⊆ S1 ∪ S2 ⊆ · · · ⊆ S1 ∪ · · · ∪ Sn = I of length n.

Since
(
n
d

)
is a polynomial in n of degree d, the degree of B(m) is the largest possible length of

a flag of flats of m, which is the rank r of m. �

Proposition 4.3.11. (Bergman polynomial reciprocity.) The Bergman invariant of a matroid
m of rank r satisfies

B(m)(−1) = (−1)rµ(m)

where µ(m) is the Möbius number of m.

Proof. Using Proposition 4.1.5 and Theorem 1.6.1 we get

B(m)(−1) = γI(sI(m)) =
∑

n face of m

(−1)|I|−dimnγ(n)

=
∑

n face of m
n loopless

(−1)|I|−dimn =
∑

F=Nm(n)
face of B(m)

(−1)dimF = χ(B̃(m)),

the reduced Euler characteristic of the Bergman complex of m. The result now follows from
Theorem 4.3.9. �





CHAPTER 5

Hypergraphs, simplicial complexes, and building sets

For the remainder of this manuscript, when P and Q are polytopes, we will write P +Q for the
Minkowski sum of P and Q. This is not to be confused with the formal sum of polytopes entering
in earlier formulas such as (29).

5.1. HGP: Minkowski sums of simplices, hypergraphs, Rota’s question

In this section we focus on a large family of generalized permutahedra which we call hyper-
graphic polytopes or Minkowski sums of simplices. The polytopes in this family conserve the Hopf
algebraic structure of GP while featuring additional combinatorial structure, which makes them
very useful for combinatorial applications, as we will see in Sections 5.2, 5.3, 5.4, 5.5, 5.6, and
5.7. In fact, HGP is a useful source of old and new Hopf monoids: we start with some impor-
tant subfamilies of generalized permutahedra – namely hypergraphic polytopes, graphic zonotopes,
simplicial complex polytopes, nestohedra, graph associahedra, permutahedra, and associahedra –
and we let them give rise to several interesting (and mostly new) Hopf monoids of a more combi-
natorial nature, denoted HG, SHG,G,SC,BS,WBS,W,Π,F, which consist of hypergraphs, simple
hypergraphs, graphs, simplicial complexes, building sets, graphical building sets, simple graphs, set
partitions, and paths, respectively. As we will see in the upcoming sections, these Hopf monoids
are related to each other by the following morphisms:

Π

""

� q

""

Gcop //� � // HGcop

s

%% %%

∼= // HGP //� � //

supp
����

GP

Wcop
∼= //WBScop //� � // BScop //� � // SHGcop

F

<<

- 

<<

SCcop

99

+ �

99

5.1.1. Minkowski sums of simplices. We briefly mentioned in earlier sections that per-
mutahedra, Loday’s associahedra, and graphic zonotopes may be expressed as Minkowski sums of
simplices. We now place these statements into a broader context, following Postnikov [77].

Recall that the Minkowski sum of two polytopes P and Q ⊆ RI is

P +Q := {p+ q | p ∈ P, q ∈ Q} ⊆ RI .

For the remainder of this monograph, P +Q will always denote this Minkowski sum.
Normal fans of polytopes behave well under scaling and Minkowski sums: the polytopes P and

λP have the same normal fan for λ > 0, while the normal fan of P +Q (and hence of λP + µQ for
λ, µ > 0) is the coarsest common refinement of the normal fans of P and Q [98]. It follows that if
P and Q are generalized permutahedra, then so is λP + µQ for λ, µ ≥ 0.

85
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Recalling from Theorem 3.1.3 that every generalized permutahedron p is associated to a unique
submodular function z such that p = P(z), the previous statement has the following counterpart.
If z and z′ are submodular functions, then so is λz + µz′ for λ, µ ≥ 0, and

(51) λP(z) + µP(z′) = P(λz + µz′).

Let ∆I = conv{ei | i ∈ I} be the standard simplex in RI . Let

∆J = conv{ei | i ∈ J} for J ⊆ I

be the faces of ∆I ; note that the face ∆J is itself the standard simplex in RJ . The following
proposition is a consequence of (51).

Proposition 5.1.1 ([77, Proposition 6.3]). If y : 2I → R≥0 is a non-negative Boolean function
then the Minkowski sum

∑
J⊆I y(J)∆J of dilations of faces of the standard simplex in RI is a

generalized permutohedron. We have

(52)
∑
J⊆I

y(J)∆J = P(z),

where z is the submodular function given by

z(J) =
∑

K∩J 6=∅

y(K) for each J ⊆ I.

Furthermore, if a polytope can be written in the form (52), then there is a unique choice of y that
makes this equation hold.1

Definition 5.1.2. A generalized permutahedron p is y-positive if it is given by (52) for a non-
negative Boolean function y : 2I → R≥0. If, additionally, y(J) is an integer for all J ⊆ I, we call p
a Minkowski sum of simplices or a hypergraphic polytope.

We should say a word about this nomenclature. A hypergraph H on I is a collection of (possibly
repeated) subsets of I, called the multiedges of H. Our convention will be that the empty set
appears exactly once inH. Then there is a natural bijection between hypergraphs and hypergraphic
polytopes: to a hypergraph H on I containing y(J) copies of the subset J ⊆ I, we associate the
hypergraphic polytope ∆H =

∑
H∈H∆H =

∑
J⊆I y(J)∆J .

Remark 5.1.3. We saw in Theorem 3.1.3 that there is a one-to-one correspondence between
generalized permutahedra in Rn and submodular functions, which naturally form a polyhedral cone
in R2n−1. The y-positive generalized permutahedra form a polyhedral subcone of this submodular
cone, which is full-dimensional since it is parameterized by 2n − 1 independent parameters. The
inequalities defining this subcone will be given in Proposition 5.1.4.2.

Many polytopes of interest are hypergraphic, although that is not always apparent at the outset.
For example, graphic zonotopes, permutahedra, and associahedra turn out to be hypergraphic, but
this is not clear from their definitions. We will see many other examples in the upcoming sections.

1In fact, every generalized permutahedron can be expressed uniquely as a signed Minkowski sum
∑
J⊆I y(J)∆J

where y(J) is allowed to be negative, but the definitions become more subtle. We will not pursue this point of view
here; for more information, see [7, Proposition 2.3].
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5.1.2. Relations, hypergraphic polytopes, and Rota’s question. A relation R ⊆ I × J
gives rise to a function fR : 2I → N defined by

fR(A) = |R(A)| = |{b ∈ B | (a, b) ∈ R for some a ∈ A}| for A ⊆ I.
Let us call such a function relational. One may verify that every relational function is submod-
ular, and Rota [63, Problem 2.4.1(d)] asked for a characterization of these relational submodular
functions:

There is an interesting open question which ought to have been worked out, and
that I ought to have worked out, but I haven’t: Characterize those submodular
set functions that come from a relation in this way [80, Exercise 18.1].

It is likely that Rota knew how to do this, but we have not been able to find a precise statement
in the literature. We offer the following characterizations.

Proposition 5.1.4. A submodular function f : 2I → R is relational if and only if either of the
following conditions hold:

(1) Its associated polytope P(f) is hypergraphic.
(2) f(∅) = 0 and for all A ⊆ I we have f(A) ∈ Z and∑

K⊇A
(−1)|K−A|f(K) ≤ 0.

Proof. 1. A relation R ⊆ I×J naturally gives rise to a hypergraph HR on I whose hyperedges
hj = {i | (i, j) ∈ R} for j ∈ J are given by the columns of R. Clearly any hypergraph on I arises
in this way from a relation. If yR(K) is the multiplicity of hyperedge K in HR then

(53) fR(A) =
∑

K∩A 6=∅

yR(K)

for all A ⊆ I. Proposition 5.1.1 then gives

P(fR) =
∑
J⊆I

yR(K)∆K .

which is a Minkowski sum of simplices. Conversely, given such a Minkowski sum, we can use its
coefficients as the multiplicities of a hypergraph which gives rise to the desired relation.

2. The submodular function of a relation R clearly satisfies fR(∅) = 0. We rewrite (53) as
fR(A) = |J | −

∑
K⊆I−A yR(K) and use the inclusion-exclusion formula to obtain

yR(B) =
∑
K⊆B

(−1)|B−K|(|J | − fR(I −K)) = −
∑
K⊆B

(−1)|B−K|fR(I −K)

for B 6= ∅. Therefore

(54) yR(I −A) = −
∑
K⊇A

(−1)|K−A|fR(K) ≥ 0

Conversely, for any integral function f satisfying the given inequalities, (54) gives us a non-negative
function y : 2I → Z. We then construct the desired relation R ⊆ I×J as in part 1: for each K ⊆ I
we include y(K) elements j in J such that hj = K. �

We wish to study these objects further, following the philosophy of Joni and Rota’s paper [60]:
we will describe their Hopf algebraic structure in Sections 5.1.3 and 5.2. This will turn out to be
a crucial ingredient for the rest of this monograph.
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5.1.3. The Hopf monoid of hypergraphic polytopes.

Proposition 5.1.5. The hypergraphic polytopes form a submonoid HGP of the Hopf monoid
of generalized permutahedra GP.

Proof. Let I = S t T be a decomposition. To prove HGP is a submonoid of GP we need to
prove two things:
• If polytopes p and q are hypergraphic in RS and RT , then p× q is hypergraphic in RI .
• If p is hypergraphic in RI , then p|S and p/S are hypergraphic in RS and RT , respectively.

For the first statement, if p =
∑

J⊆S y1(J)∆J ⊆ RS and q =
∑

K⊆T y2(K)∆K ⊆ RT are
Minkowski sums of simplices, then

(55) p× q = p + q =
∑
J⊆S

y1(J)∆J +
∑
K⊆T

y2(K)∆K ⊆ RI

is also a Minkowski sum of simplices.
For the second one, we use that (P + Q)v = Pv + Qv for any polytopes P,Q ⊆ RI and any

linear functional v ∈ RI . Now, the maximal face of the simplex ∆J in direction 1S is

(∆J)S,T =

{
∆J∩S if J ∩ S 6= ∅
∆J if J ∩ S = ∅.

Therefore if p =
∑

J⊆I y(J)∆J ⊆ RI is a hypergraphic polytope, then its 1S-maximal face is

pS,T = p|S + p/S where

(56) p|S =
∑

J∩S 6=∅

y(J)∆J∩S ⊆ RS , p/S =
∑

J∩S=∅

y(J)∆J ⊆ RT .

Therefore p|S and p/S are hypergraphic, as desired. �

Since HGP is a Hopf submonoid of GP, Theorem 1.6.1 gives us a formula for the antipode of
HGP. We write it down in Theorem 5.2.5 in terms of hypergraphs.

5.2. HG: Hypergraphs

Recall that a hypergraph with vertex set I is a collection H of (possibly repeated) subsets of
I. We will use the convention that there is always a single copy of ∅ in H.2 We can think of each
subset H in H as a multiedge which can now connect any number of vertices.

5.2.1. The Hopf monoid of hypergraphs. Let HG[I] be the set of all hypergraphs with
vertex set I. Clearly HG is a species, which we now turn into a Hopf monoid.

Let I = S t T be a decomposition.

• For H1 ∈ HG[S] and H2 ∈ HG[T ], define their product H1 ·H2 ∈ HG[I] to be the disjoint union
H1 tH2 as a hypergraph on I.

• The coproduct of H ∈ HG[I] is (H|S ,H/S), where the restriction and contraction of H with
respect to S are the multisets

H|S := {H | H ∈ H, H ⊆ S}
H/S := {H ∩ T | H ∈ H, H * S} ∪ {∅}.

2This is the opposite of the usual convention that ∅ /∈ H.
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Each multiedge HS of H|S has the same multiplicity that it had in H, while the multiplicity of
a nonempty multiedge HT of H/S is the sum of the multiplicities of the edges H ∈ H such that
H ∩ T = HT .

The Hopf monoid axioms are easily verified.

Example 5.2.1. For the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} on I = [3], we have

H|13 = {∅, 1, 3}, H/13 = {∅, 2, 2, 2, 2},
H|2 = {∅, 2}, H/2 = {∅, 1, 1, 3, 3, 13}.

We omit the brackets from the individual multiedges in H for clarity.

5.2.2. Hypergraphs as a submonoid of generalized permutahedra. Recall that the
hypergraphic polytope of a hypergraph H on I is the Minkowski sum

∆H =
∑
H∈H

∆H

where ∆H is the standard simplex in RH ⊆ RI .

Example 5.2.2. The hypergraphic polytope for the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} is
∆H = ∆1 + ∆2 + ∆3 + ∆12 + ∆23 + ∆123, as shown in Figure 1.

+ + + + =+

2

1 3

Figure 1. The hypergraphic polytope of the hypergraph H = {∅, 1, 2, 3, 12, 23, 123}.

Let HGcop be co-opposite to the Hopf monoid of hypergraphs HG, as defined in Section 1.1.2; it
has the same product and the reverse coproduct of HG.

Proposition 5.2.3. The map H 7→ ∆H gives an isomorphism HGcop ∼=−→ HGP between HGcop

and the Hopf monoid of hypergraphic polytopes HGP.

Proof. We know that the map is bijective. The equation (55) says that the map preserves the
product and (56), which may be rewritten as (∆H)|S = ∆H/T and (∆H)/S = ∆H|T , says that the
map reverses the coproduct. �

Example 5.2.4. For the hypergraphic polytope of Example 5.2.2 and Figure 1, the northwest
edge and southwest vertex are described by

(∆H)13,2 = (∆1 + ∆2 + ∆3 + ∆1 + ∆3 + ∆13) = ∆{∅,1,1,3,3,13} ×∆{∅,2} = ∆H/2 ×∆H|2
(∆H)2,13 = (∆1 + ∆2 + ∆3 + ∆2 + ∆2 + ∆2) = ∆{∅,2,2,2,2} ×∆{∅,1,3} = ∆H/13 ×∆H|13 ,

in (co-opposite) agreement with Example 5.2.2.
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Theorem 5.2.5. The antipode of the Hopf monoid of hypergraphs HG is given by the following
cancellation-free and combination-free expression. If H is a hypergraph on I then

sI(H) =
∑

∆G≤∆H

(−1)c(G)G,

summing over all faces ∆G of the hypergraphic polytope ∆H of H, where c(G) is the number of
connected components of the hypergraph G.

Proof. This is the result of applying Theorem 1.6.1 to the submonoid HGP of GP, taking
into account the identification of HGP and HG of Proposition 5.2.3 and the observation that
dim ∆G = |I| − c(G). There is no cancellation or grouping in the right hand side of this equation
because ∆G = ∆G′ implies G = G′. �

Example 5.2.6. The antipode of the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} in HG is given by
the hypergraphic polytope of Figure 1, namely:

s[3](H) = {∅, 1, 2, 3, 12, 23, 123} − {∅, 1, 2, 3, 1, 23, 1} − {∅, 1, 2, 3, 1, 3, 13}
−{∅, 1, 2, 3, 12, 3, 3} − {∅, 1, 2, 3, 2, 23, 23} − {∅, 1, 2, 3, 12, 2, 12}
+{∅, 1, 2, 3, 1, 2, 1}+ {∅, 1, 2, 3, 1, 3, 1}+ {∅, 1, 2, 3, 1, 3, 3}
+{∅, 1, 2, 3, 2, 3, 3}+ {∅, 1, 2, 3, 2, 2, 2}.

5.2.3. Graphs, revisited. We now give another explanation of the inclusion of Gcop into GP
shown in Proposition 3.2.5.

Proposition 5.2.7. The map g 7→ Zg is an injective morphism of Hopf monoids Gcop ↪→ GP.

Proof. Since the graph operations of G defined in Section 1.2.1 are special cases of the hyper-
graph operations of HG defined in Section 5.2.4, we have an inclusion of Hopf monoids, G ↪→ HG,
which gives an inclusion Gcop ↪→ HGcop. Proposition 5.2.3 tells us that the map H 7→ ∆H is
an isomorphism HGcop ∼= HGP. By Proposition 3.2.3, the composition of these maps is the map
Gcop → HGP ↪→ GP given by g 7→ Zg. �

5.2.4. Simple hypergraphs and simplification. A hypergraph is simple if it has no re-
peated multiedges.3 In the applications we have in mind, we are only interested in simple hyper-
graphs. Unfortunately, simple hypergraphs are not closed under the contraction map of HG, so the
Hopf structure that we define on them requires a slightly different contraction map. Let SHG[I]
be the set of all simple hypergraphs with vertex set I.

Let I = S t T be a decomposition.

• The product of H1 ∈ SHG[S] and H2 ∈ SHG[T ] is their disjoint union H1 tH2.

• The coproduct of H ∈ SHG[I] is (H|S ,H/S), where the restriction and contraction of H with
respect to S are:

H|S := {H | H ∈ H, H ⊆ S}
H/S := {H ∩ T | H ∈ H, H * S} ∪ {∅} = {B ⊆ T | A tB ∈ H for some A ⊆ S},

now regarded as sets without repetition.

One easily verifies that the simplification maps, which remove any repetitions of multiedges in
a hypergraph, give a morphism of Hopf monoids s : HG � SHG. We now show that this map
behaves reasonably well with respect to the corresponding polytopes. Define HGP ⊆ GP to be the
quotient of HGP obtained by identifying hypergraphic polytopes with the same normal fan.

3We allow simple hypergraphs to contain singletons, slightly against the usual convention.
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Proposition 5.2.8. We have a commutative diagram of Hopf monoids as follows.

HGcop

s
����

oo
∼= // HGP

����

SHGcop // // HGP

Proof. The two vertical maps are defined in the previous paragraph, while the top map is
H 7→ ∆H. It remains to verify that the bottom map that makes this diagram commute is well-
defined: if H is a hypergraph, the normal fan N∆H is the common refinement of N∆H

as we range
over all H ∈ H; this only depends on the simplification of H. �

Remark 5.2.9. The bottom map SHGcop ↪−→ HGP of Proposition 5.2.8 is not an isomorphism.
For example, ∆{∅,12,13,23} and ∆{∅,12,13,23,123} are hexagons with the same normal fan. More gen-
erally, for any simple hypergraph H on I containing all pairs {i.j} with i, j ∈ I, the hypergraphic
polytope ∆H is normally equivalent to the standard permutahedron πI . To see this, notice that
the normal fan of ∆H coarsens the braid arrangement (since ∆H is a generalized permutahedron)
and refines the braid arrangement (since it has πI =

∑
{i,j}⊆I ∆{i,j} as a Minkowski summand).

5.2.5. The support maps. The support maps suppI : HGP[I] → SHG[I] will be an impor-
tant tool in what follows; they take a hypergraphic polytope p = ∆H =

∑
J⊆I y(J)∆J ⊆ RI to the

simple hypergraph supporting it:

suppI(p) := {J ⊆ I | y(J) > 0} ∪ {∅}.

Under the isomorphism HGP ∼= HGcop of Proposition 5.2.3 which identifies p with its corresponding
hypergraph H, the support suppI(p) is the simplification of H.

Theorem 5.2.10. The support maps suppI : HGP[I] → SHG[I] give a surjective morphism of
Hopf monoids supp : HGP � SHGcop.

Proof. This morphism is the composition of the top isomorphism with the simplification map
s in Proposition 5.2.8. �

Theorem 5.2.11. The antipode of the Hopf monoid of simple hypergraphs SHG is given by the
following cancellation-free expression. If H is a simple hypergraph on I then

sI(H) =
∑

F≤∆H

(−1)c(F )suppI(F ),

summing over all faces F of the hypergraphic polytope ∆H of H, where c(F ) = |I| − dimF is the
number of connected components of the hypergraph suppI(F ).

Proof. Thanks to Proposition 1.1.17, the surjective maps supp turn Theorem 5.2.5, our for-
mula for the antipode of HGcop ∼= HGP, into a formula for the antipode of SHG. The formula is
cancellation free because faces of different dimension must have different support. �

Example 5.2.12. The antipode of the hypergraph H = {∅, 1, 2, 3, 12, 23, 123} in SHG is also
given by the hypergraphic polytope of Figure 1, but the result is now the simplification of the one
in Example 5.2.6:

s[3](H) = H− 2{∅, 1, 2, 3, 23} − 2{∅, 1, 2, 3, 12} − {∅, 1, 2, 3, 12}+ 5{∅, 1, 2, 3}
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As in the case of matroids, we have no simple combinatorial labeling of the faces of a general
hypergraphic polytope, so we do not have a way of simplifying the formula of Theorem 5.2.11. This
shows that hypergraphic polytopes are fundamental in the Hopf structure of hypergraphs.

However, we do know a few families of hypergraphic polytopes whose combinatorial structure
we can describe more explicitly; they give rise to interesting combinatorial families which inherit
Hopf monoid structures from their polytopes. In the remaining sections of this monograph, we will
describe the resulting Hopf monoids and use Theorem 5.2.11 to describe their antipodes.

5.3. SC: Simplicial complexes, graphs, and Benedetti et al.’s formula

Benedetti, Hallam, and Machacek [14] constructed a combinatorial Hopf algebra of simplicial
complexes, and obtained a formula for its antipode through a clever combinatorial argument. Sur-
prisingly, the formula is almost identical to Humpert and Martin’s formula for the antipode of the
Hopf algebra of graphs [58]. In this section, by modeling simplicial complexes polytopally, we are
able to offer a simple geometric explanation of this phenomenon.

A(n abstract) simplicial complex on a finite set I is a collection C of subsets of I, called faces,
such that any subset of a face is a face; that is, if J ∈ C and K ⊆ J then J ∈ C. For a subset J ⊆ I,
the induced simplicial complex C|J consists of the faces of C which are subsets of J .

5.3.1. The Hopf monoid of simplicial complexes. Let SC[I] denote the set of all simplicial
complexes on I. We turn the set species SC into a commutative and cocommutative Hopf monoid
with the following structure.

Let I = S t T be a decomposition.

• The product of two simplicial complexes C1 ∈ SC[S] and C2 ∈ SC[T ] is their disjoint union.

• The coproduct of a simplicial complex C ∈ SC[I] is (C|S , C|T ).

The Hopf monoid axioms are easily verified.
At first sight, this Hopf monoid – which is cocommutative – does not seem related to the Hopf

monoids of hypergraphs – which are not cocommutative. However, it turns out that SC lives inside
the cocommutative part of SHG.

Proposition 5.3.1. The Hopf monoid of simplicial complexes SC is a submonoid of the Hopf
monoid of simple hypergraphs SHG.

Proof. Simplicial complexes are simple hypergraphs, and the product and restriction oper-
ations for these two families coincide. The contraction operations are defined slightly differently.
However, if C is a simplicial complex and I = S t T is a decomposition, one may verify that the
contraction C/S in the sense of simple hypergraphs coincides with the restriction C|T in the sense
of simplicial complexes. �

5.3.2. Simplicial complex polytopes. Each simplicial complex C, being a hypergraph, has
a corresponding hypergraphic polytope ∆C :=

∑
C∈C ∆C . Unlike general hypergraphic polytopes,

this family of polytopes have a simple combinatorial facial structure.
Recall that the one-skeleton C(1) of a simplicial complex on I is the graph on I whose edges are

the sets in C of size 2.

Lemma 5.3.2. For any simplicial complex C, the hypergraphic polytope ∆C is normally equivalent
to the graphic zonotope ZC(1) of its one-skeleton C(1).
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Proof. We use the central fact from Proposition 5.2.8 that the normal equivalence class of a
hypergraphic polytope ∆H depends only on the support supp(∆H).

Let C be a simplicial complex on I. Since they have the same support, the simplicial complex
polytope ∆C =

∑
F∈C ∆F is normally equivalent to the polytope

P1 =
∑
G∈C

∑
F⊆G

∆F =
∑
G∈C

π′G.

where we define π′G :=
∑

F⊆G ∆F for each set G ∈ C. By Remark 5.2.9, π′G is normally equivalent

to the standard permutahedron πG in RI . Therefore the polytope P1 is normally equivalent to

P2 =
∑
G∈C

πG =
∑
G∈C

∑
{i,j}⊆G

∆{i,j}

using (19). In turn, P2 is normally equivalent to ZC(1) =
∑
{i,j}∈C ∆{i,j} since they have the same

support. �

As a consequence, the simplicial complex polytope ∆C has the same facial structure as the
zonotope Zg for g = C(1), as described by Lemma 3.2.4. It would be interesting to further study
these simplicial complex polytopes.

5.3.3. The antipode of simplicial complexes. Since simplicial complexes form a sub-
monoid of simple hypergraphs by Proposition 5.3.1, we may use Theorem 5.2.11 to compute the
antipode of SC, thus recovering the formula of Benedetti, Hallam, and Machacek [14]. We now
carry this out.

Let C be a simplicial complex C on I and let f be a flat of the 1-skeleton C(1) of C. The flat f
is a subgraph of C(1), and its connected components form a partition π = {π1, . . . , πk} of its vertex
set I. As before, we let c(f) = k denote the number of connected components of f . We define
C(f) = C|π1 t · · · t C|πk to be the subcomplex of C consisting of the faces which are contained in a
connected component of f .

Corollary 5.3.3 ([14]). The antipode of the Hopf monoid of simplicial complexes SC is given
by the following cancellation-free and combination-free expression. If C is a simplicial complex
on I then

sI(C) =
∑
f

(−1)c(f)a(g/f) C(f),

summing over all flats f of the 1-skeleton g = C(1) of C, where a(g/f) is the number of acyclic
orientations of the contraction g/f .

Proof. By Theorem 5.2.11, the antipode of C is given by the face structure of the polytope
∆C , which is equivalent to the face structure of the zonotope Zg by Lemma 5.3.2. Lemma 3.2.4 tells
us that the faces of these polytopes are in bijection with the pairs of a flat f of g and an acyclic
orientation o of g/f . Recall from that proof that the maximal face (∆C)y in a direction y ∈ RI
depends only on a flat f = fy of g and an orientation o = oy of g/f determined by y. The flat f of
g consists of the edges ij such that y(i) = y(j); the acyclic orientation o of g/f will be irrelevant
here.

The corollary will now follow from the claim that the support of the (|I| − c)-dimensional face
(∆C)y equals C(f), independently of the choice of o. To prove this claim, we will use the following
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expressions:

(57) (∆C)y =
∑
C∈C

(∆C)y, ∆C(f) =
∑
C∈C :

y is constant on C

∆C .

We will show that they have the same summands, possibly with different multiplicities.
−→: For each C ∈ C we have (∆C)y = ∆Cmax where Cmax = {c ∈ C | y(c) is maximum}. Clearly y
is constant on Cmax, so this is a summand of ∆C(f).
←−: For any summand ∆C of ∆C(f), C is a face of the simplicial complex C where y is constant,
so ∆C = ∆Cmax = (∆C)y is a summand of (∆C)y.
This proves the claim that supp(∆C)y = C(f), and the desired result follows. �

The proof above gives a simple geometric explanation for the striking similarity between the
antipode formulas for the Hopf algebra of graphs G and the Hopf algebra of simplicial complexes
SC: these formulas have the same combinatorial structure because they are controlled by polytopes
that are normally equivalent.

5.4. BS: Building sets and nestohedra

In this section we study building sets, a second family of hypergraphs whose hypergraphic
polytope has an elegant combinatorial structure. This allows us to describe the Hopf theoretic
structure of building sets very explicitly.

Building sets were introduced independently and almost simultaneously in two very different
contexts by De Concini and Procesi [31] in their construction of the wonderful compactification of
a hyperplane arrangement, and by Schmitt [85] (who called them Whitney systems) in an effort to
abstract the notion of connectedness. We follow [77]; see also [37, 38, 49].

Definition 5.4.1. A collection B of subsets of a set I is a building set on I if it satisfies the
following conditions:
• If J,K ∈ B and J ∩K 6= ∅ then J ∪K ∈ B
• For all i ∈ I, {i} ∈ B.
We call the sets in B connected.

We call the maximal sets of a building set B its connected components; one may show that they
form a partition of I. If I ∈ B then we say B is connected.

One prototypical example of a building set comes from a graph w on vertex set I. The connected
sets are the subsets J ⊆ I for which the induced subgraph of w on J is connected. This family of
graphical building sets is the subject of Section 5.5.

Example 5.4.2. The graphical building set for the path •
1 2
•

3
• on [3] is the hypergraph

{∅, 1, 2, 3, 12, 23, 123} of Example 5.2.2.

Another example of a building set comes from a matroid m on I. The connected sets of m form
a building set on I. We recall that a subset J ⊆ I of a matroid is connected if for every pair of
elements x, y ∈ J there exists a circuit C (a minimal set with r(C) < |C|) such that {x, y} ⊆ C ⊆ J .

5.4.1. The Hopf monoid of building sets. Let BS[I] denote the species of building sets on
I. The species BS becomes a Hopf monoid with the following additional structure.

Let I = S t T be a decomposition.

• The product of two building sets B1 ∈ BS[S] and B2 ∈ BS[T ] is their disjoint union.
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• The coproduct of a building set B ∈ BS[I] is (B|S ,B/S) ∈ BS[S] × BS[T ], where the restriction
and contraction of B with respect to S are defined as

B|S = {B | B ∈ B, B ⊆ S}
B/S = {B ⊆ T | A tB ∈ B for some A ⊆ S}.

One may check that these two collections are indeed building sets, and that the operations
defined above satisfy the axioms of Hopf monoid.

Proposition 5.4.3. The Hopf monoid of building sets BS is a submonoid of the Hopf monoid
of simple hypergraphs SHG.

Proof. Building sets are simple hypergraphs, and the product, restriction, and contraction
operations for these two families are defined identically. �

Note that this Hopf structure is essentially the same as the one defined by Grujić in [48, 50],
but different from the (cocommutative) Hopf algebras of building sets defined in [49, 85].

5.4.2. Nestohedra. Since each building set B is a hypergraph, we can model it polytopally
using its hypergraphic polytope, which is called the nestohedron

∆B =
∑
J∈B

∆J .

Unlike general hypergraphic polytopes, there is an explicit combinatorial description of the faces
of the nestohedron ∆B; they are in bijection with the nested sets for B and with the B-forests, two
equivalent families of objects which we now define.

Definition 5.4.4. [38, 77] A nested set N for a building set B is a subset N ⊆ B such that:
(N1) If J,K ∈ N then J ⊆ K or K ⊆ J or J ∩K = ∅.
(N2) If J1, . . . , Jk ∈ N are pairwise incomparable and k ≥ 2 then J1 ∪ · · · ∪ Jk /∈ B.
(N3) All connected components of B are in N .
The nested sets of B form a simplicial complex, called the nested set complex of B.

Example 5.4.5. The collection N = {3, 4, 6, 7, 379, 48, 135679, 123456789} is a nested set for
the graphical building set of the graph shown in Figure 2(a); see also Figure 4.
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3
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3
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Figure 2. (a) A graph w. (b) A nested set for the graphical building set B of w
and the corresponding B-forest.

As shown in [38, 77] and illustrated in Figure 2(b), nested sets for B are in bijection with a
family of objects called B-forests, as follows. We may regard a nested set N as a poset ordered by
containment. We then relabel each node by removing all elements which appear in nodes below it;
the result is the corresponding B-forest. We now define these objects more precisely.
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Definition 5.4.6. [38, 77] Given a building set B on I, a B-forest N is a rooted forest whose
vertices are labeled with nonempty sets partitioning I such that:
(F1) For any node S, N≤S ∈ B.

(F2) If S1, . . . , Sk are pairwise incomparable and k ≥ 2,
⋃k
i=1N≤Si /∈ B.

(F3) If R1, . . . , Rr are the roots of N , then the sets N≤R1 , . . . ,N≤Rr are precisely the connected
components of B.

Here ≤ denotes the partial order on the nodes of the forest where all branches are directed up
towards the roots. Also we denote N≤S :=

⊔
T≤S T .

Proposition 5.4.7. [38, 77] For any building set B on I, there is a bijection between the nested
sets for B and the B-forests.

As the notation suggests, we will make no distinction between a nested set and its corresponding
B-forest.

Each B-forest N gives rise to a building set

(58) B(N ) :=
⊔

S node of N
B[N<S ,N≤S ]

where for X ⊆ Y ⊆ I we define B[X,Y ] := (B|Y )/X = (B/X)|Y−X on Y −X.

Theorem 5.4.8. [38, 77] Let B be a building set. There is an order-reversing bijection between
the faces of the nestohedron ∆B and the nested sets of B. If N is a nested set of B and FN is the
corresponding face of ∆B, then dimFN = |I| − |N | and suppI(FN ) = B(N ).

Proof. This is implicit in the proofs of [11, Proposition 3.5] and [77, Theorem 7.4, 7.5]. �

In other words, the nestohedron ∆B is a simple polytope whose dual simplicial complex is
isomorphic to the nested set complex of B. An example is illustrated in Figure 3.
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Figure 3. The hypergraphic polytope of Figure 1 is the nestohedron for the build-
ing set B = {∅, 1, 2, 3, 12, 23, 123}; its faces are labeled by the B-forests.
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5.4.3. The antipode of building sets. Since building sets form a submonoid of simple
hypergraphs by Proposition 5.4.3, we may use Theorem 5.2.11 to compute the antipode of BS.

Corollary 5.4.9. The antipode of the Hopf monoid of building sets BS is given by the following
cancellation-free expression. If B is a building set on I then

sI(B) =
∑

B−forests N
(−1)|N |B(N )

where for each B-forest N , |N | is the number of vertices of N and B(N ) is defined in (58).

Proof. By Theorem 5.2.11, the antipode of BS is given by the face structure of the nestohedron
∆B. It remains to invoke Theorem 5.4.8 which tells us the dimension and the building set supporting
each face of ∆B. The formula is cancellation-free since faces of different dimensions have different
supports. �

Note that the formula of Corollary 5.4.9 is not combination-free. For example, all vertices of
∆B map to the trivial building set {{i}, i ∈ I} ∪ {∅}.

Example 5.4.10. Let us return to the building set {∅, 1, 2, 3, 12, 23, 123} of Example 5.4.2. We
computed its antipode in Example 5.2.12:

s[3](H) = H− 2{∅, 1, 2, 3, 23} − 2{∅, 1, 2, 3, 12} − {∅, 1, 2, 3, 12}+ 5{∅, 1, 2, 3}

and we now encourage the reader to compare this with the expression in Corollary 5.4.9.

5.5. W: Simple graphs, ripping and sewing, and graph associahedra

In Section 5.4 we briefly mentioned how connectivity in graphs was one of the motivations to
study building sets. In this section we focus on the graphical building sets that arise in this way,
which give rise to a new Hopf monoid W on graphs. This ripping and sewing Hopf monoid should
not be confused with the monoids G, SG, and Γ of Sections 3.2 and 3.3.5.

Definition 5.5.1. Let w be a simple graph whose vertex set is I. A subset J ⊆ I is a tube if
the induced subgraph of w on J is connected. The set of tubes of w is a building set; we denote it
tubes(w) and call it the graphical building set of w.

Let WBS[I] be the set of graphical building sets on I. We will see in Proposition 5.5.3 that
graphical building sets form a submonoid of BS, which we now describe directly in terms of the
graphs.

5.5.1. The ripping and sewing Hopf monoid of simple graphs.

Definition 5.5.2. Given a simple graph w whose vertex set is I, and a partition I = S t T ,
an S-thread is a path in w whose initial and final vertices are in T , and all of whose intermediate
vertices (if any) are in S.

Define the operations of ripping and sewing as follows.
• ripping out T : w|S is the induced subgraph on S, obtained by “ripping out” every vertex of T
and every edge incident to T .
• sewing through S: w/S is the simple graph on T where we add or “sew in” an edge uv between
vertices u, v ∈ T if the graph w contains an S-thread from u to v. Note that this includes all edges
of w|T .
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For example, let I = {a, b, c, d, e, f, g, h}, S = {a, b, c, d}, and T = {e, f, g, h}. For the graph

w =

a
b

f
h

e
c

d

g , we have w|S =

a
b

c

d and w/S =

f
h

e

g .

Let W[I] be the set of simple graphs on vertex set I. We turn the species W into the ripping
and sewing Hopf monoid with the following operations.

Let I = S t T be a decomposition.

• The product of two simple graphs w1 ∈W[S] and w2 ∈W[T ] is their disjoint union.

• The coproduct of a simple graph w ∈W[I] is (w|S , w/S) ∈W[S]×W[T ] where w|S and w/S are
obtained from w by ripping out T and sewing through S, respectively.

One easily checks that this is indeed a Hopf monoid.

Proposition 5.5.3. The species WBS of graphical building sets is a submonoid of the Hopf
monoid of building sets. Furthermore, the tube maps w 7→ tubes(w) give an isomorphism of Hopf
monoids W ∼= WBS ↪→ BS.

Proof. We first prove that the map tubes : W → BS is a morphism of Hopf monoids. We
do know that the set tubes(w) is a building set for any w. Also tubes preserves products because
tubes(w1 t w2) = tubes(w1) t tubes(w2) for w1 ∈ W[S] and w2 ∈ W[T ]. It remains to check that
the map tubes preserves coproducts; that is,

tubes(w)|S = tubes(w|S), tubes(w)/S = tubes(w/S)

for any simple graph w on I and any subset S ⊆ I.
The first statement is clear: the connected sets in w which are subsets of S are precisely the

connected sets in w|S , the induced subgraph on S. Let us prove the second one.
⊆: Suppose B ∈ tubes(w)/S , so A t B is a tube of w for some subset A ⊆ S. To show

B ∈ tubes(w/S), we need to show that for any u, v ∈ B there is a path from u to v in w/S .
We do have a path P from u to v inside the induced subgraph A tB of w, since this is a tube

in w. This path may contain vertices of S and T ; let u = t0, t1, . . . , tk−1, tk = v be the vertices
of T that it visits, in that order. Now, for each 0 ≤ i ≤ k − 1, the path P contains an S-thread
tis1 . . . slti+1 from ti to ti+1 for some l ≥ 0, so titi+1 is an edge of w/S . It follows that t0t1 . . . tk−1tk
is our desired path from u to v in w/S . We conclude that B ∈ tubes(w/S).
⊇: Conversely, suppose B ∈ tubes(w/S). For each edge uv in w/S , choose an S-thread from u

to v; let Suv ⊆ S be the set of vertices on that S-thread other than u and v. Let A ⊆ S be the
union of the sets Suv as we range over all edges uv of w/S . We claim that AtB is a tube in w. To
show this, first note that any two vertices u, v of B are connected by an S-thread inside A tB by
construction. Furthermore, any vertex of A belongs to the set Suv for some u, v ∈ B, and hence is
connected to u and v by a path in AtB. It follows that AtB is a tube of w and B ∈ tubes(w)/S
as desired.

Thus we have proved that tubes : W→ BS is a morphism of Hopf monoids, and hence that its
image WBS is a submonoid of BS. It remains to prove that the surjective map tubes : W � WBS
is also injective. To see this, notice that we can easily recover a simple graph w ∈ W[I] from its
graphical building set tubes(w): the edges of w are precisely the tubes of size 2. �
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5.5.2. Graph associahedra. For a simple graph w on I we define the graph associahedron
∆w ⊆ RI to be

∆w :=
∑

τ∈tubes(w)

∆τ .

Graph associahedra are the nestohedra corresponding to graphical building sets. Let us recall their
combinatorial structure, as described in [26, 77].

Definition 5.5.4. Let w be a simple graph. A tubing is a set t of tubes such that:
• any two tubes τ1 and τ2 in t are disjoint or nested: we have τ1 ⊆ τ2, τ1 ⊇ τ2, or τ1 ∩ τ2 = ∅.
• if τ1, . . . , τk are pairwise disjoint tubes in t, then τ1 ∪ · · · ∪ τk is not a tube of w.
• every connected component of w is a tube in t.

Comparing this with Definition 5.4.4 we see that the tubings of w are precisely the nested sets for
the graphical building set tubes(w). An example is shown in Figure 4.

1
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6
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3

2

Figure 4. The nested set N = {3, 4, 6, 7, 379, 48, 135679, 123456789} of Figure 2,
now drawn as a tubing.

For each tube τ in a tubing t, let t<τ be the union of the tubes of t that are strictly contained
in τ , and let the essential set of τ be ess(τ) = τ − t<τ . As τ ranges over the tubes of t, the essential
sets ess(τ) partition I.

Each tubing t of w gives rise to a simple graph

(59) w(t) :=
⊔

τ tube of t

w[t<τ , τ ],

where w[t<τ , τ ] := (w|τ )/t<τ is the simple graph on ess(τ) obtained by restricting w to τ and then
sewing through the tubes strictly inside of τ . Since the essential sets of τ partition I, w(t) is a
simple graph on I.

Theorem 5.5.5. [26, 77] Let w be a simple graph. There is an order-reversing bijection between
the faces of the graph associahedron ∆w and the tubings of w. If t is a tubing of w and Ft is the
corresponding face of ∆w, then dimFt = |I| − |t| and suppI(Ft) = w(t).

Proof. This is the result of specializing Theorem 5.4.8 to graphical building sets and graph
associahedra. �

An example is illustrated in Figure 5.



100 5. HYPERGRAPHS, SIMPLICIAL COMPLEXES, AND BUILDING SETS

2

1 3

Figure 5. The nestohedron of Figures 1 and 3 is the graph associahedron for the
path of length 3; its faces are labeled by the tubings of the path.

5.5.3. The antipode of the ripping and sewing Hopf monoid.

Theorem 5.5.6. The antipode of the ripping and sewing Hopf monoid of simple graphs W is
given by the following cancellation-free expression. If w is a simple graph on I then:

sI(w) =
∑

t tubing

(−1)|t|w(t)

where |t| is the number of tubes of t and w(t) is defined in (59).

Proof. Since W is isomorphic to the Hopf monoid of graphical building sets WBS, which is
a submonoid of the Hopf monoid of simple hypergraphs SHG, its antipode is given by Theorem
5.2.11. It remains to invoke Theorem 5.5.5, and to remark again that faces of different dimension
map to different supports. �

Note that the formula above is not combination-free. For example, for every maximal tubing
t, w(t) is the graph with no edges.

Example 5.5.7. The antipode of the path of length 3 in W is dictated by its graph associahe-
dron, which again is the polytope of Figures 1, 3, and 5. The result is now:

(( + 2  s
1 2 3

= _ _
1 2 3

1 2

3
   5  +  1 3

2
+ 2  2 3

1

1 2

3

Figure 6. The antipode of a path of length 3 in W.

5.6. Π: Set partitions and permutahedra, revisited

Definition 5.6.1. A clique is a complete graph. A cliquey graph is a disjoint union of complete
graphs.

Let K[I] be the set of cliquey graphs on I. There is a natural bijection between cliquey graphs
on I and set partitions of I: the cliquey graph w on I corresponds to the set partition π(w) formed
by its connected components.
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Proposition 5.6.2. The species K of cliquey graphs is a submonoid of the ripping and sewing
Hopf monoid of simple graphs W. Furthermore, K is isomorphic to the Hopf monoid of set partitions
Π.

Proof. Since the disjoint union of cliquey graphs is cliquey, K is closed under multiplication.
Also if KI is the clique on I then (KI)|S = KS and (KI)/S = KT , so K is also closed under
comultiplication, proving the first assertion. The map π : K → Π sending a cliquey graph w to
π(w) gives the desired isomorphism; it clearly preserves products, and since

π(KI)|S = {I}|S = {S} = π(KS) = π(KI |S) and

π(KI)/S = {I}/S = {T} = π(KT ) = π(KI/S),

it also preserves coproducts. �

Since Π is cocommutative, we also have Π ∼= K ↪→W cop, as shown in the commutative diagram
at the beginning of Section 5.1.

5.6.1. The antipode of set partitions.

Theorem 5.6.3 ([2, Theorem 12.47]). The antipode of the Hopf monoid of set partitions Π is
given by the following cancellation-free and combination-free expression. If π is a set partition
on I,

sI(π) =
∑
ρ|π≤ρ

(−1)b(ρ)(π : ρ)! ρ

summing over all partitions ρ that refine π. Here b(ρ) denotes the number of blocks of ρ, and
(π : ρ)! =

∏
pi∈π ni! where ni is the number of blocks of ρ that partition the block pi of π.

Proof. Let w be a cliquey graph and π = {p1, . . . , pk} be the corresponding set partition.
A tube on w is a subset of one of the parts pi. A tubing t on w cannot contain two disjoint
subsets of the same pi; thus t consists of a flag ti• of subsets ∅ = τ i0 ⊂ · · · ⊂ τ ini = pi for each

part pi. The flag ti• gives rise to a composition pi = ρi1 t · · · t ρini where ρij = τ ij − τ ij−1. If we

let ρ(t) = {ρij | 1 ≤ i ≤ k, 1 ≤ j ≤ ni} as an unordered set partition, then ρ(t) is the partition

corresponding to the graph w(t) of (59). Clearly ρ(t) ≥ π and |t| = b(ρ(t)).
It remains to observe that the map from a tubing t to the partition ρ(t) is a (π : ρ)!-to-1 map,

because there are ni! linear orders for the partition {ρi1, · · · , ρini} of pi for 1 ≤ i ≤ k, which give
rise to different choices of the tubing t. �

As an example, let us revisit the cancellation-free formula for the antipode of the set partition
{ab, cde} shown in the introduction.

(( _  _  _  

_  

_  2 2  2  2  s
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As should be clear by now, our derivation of Theorem 5.6.3 is controlled by a polytope; for the
set partition π with blocks p1, . . . , pk, it is the graph associahedron

∆π = π′p1 × · · ·π
′
pk
≡ πp1 × · · ·πpk ,
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where π′I :=
∑

J⊆I ∆J is normally equivalent to the standard permutahedron πI .

Thus the antipode of π = {ab, cde} is an algebraic shadow of the face structure of the hexagonal
prism π′{a,b} × π

′
{c,d,e}: it has one 3-face, eight 2-faces (in normal equivalence classes of size 2, 2, 2,

2), eighteen edges (in equivalence classes of sizes 6, 4, 4, 4) and twelve vertices (in one equivalence
class of size 12).

b

d

e

c

a

Figure 7. The product π′{a,b} × π
′
{c,d,e} in R{a,b,c,d,e}.

5.6.2. Permutahedra, set partitions, and the Hopf algebra of symmetric functions.
We conclude this section by precisely stating connections between permutahedra, set partitions,
and symmetric functions

Proposition 5.6.4. The Hopf monoid of permutahedra Π is isomorphic to the Hopf monoid of
set partitions Π.

Proof. The Hopf monoid Π is generated multiplicatively by the standard permutahedra πI ,
with coproduct given by ∆S,T (πI) = (πS , πT ) as observed in Lemma 2.2.1. Comparing this with
the definition of the Hopf monoid Π gives the isomorphism. �

Recall that K is the Fock functor that associates a Hopf algebra K(H) to any Hopf monoid in
vector species H.

Proposition 5.6.5. The Hopf algebra of permutahedra K(Π) is isomorphic to the Hopf algebra
of symmetric functions Λ.

Proof. This proof requires some basic facts about symmetric functions; see [68] and [91,
Section 7]. The Hopf algebra of symmetric functions Λ = k[x1, x2, . . .]

S∞ is most easily described
in terms of the homogeneous and elementary symmetric functions:

hn =
∑

i1≤···≤in

xi1 · · ·xin , en =
∑

i1<···<in

xi1 · · ·xin

As an algebra, Λ = k[e1, e2, . . .] is simply the polynomial algebra on the ei, while the coproduct
and antipode of Λ are

∆(en) =
∑
i+j=n

ei ⊗ ej , s(en) = (−1)nhn.

for n ≥ 0, where e0 = 1.
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The Fock functor K maps Π to the graded Hopf algebra K(Π); let it take the permutahedron
πI ∈ Π[I] to the element n!gn ∈ Πn where n = |I|. Then (31) tells us that as an algebra
K(Π) = k[g1, g2, . . .] while Lemma 2.2.1 tells us that the coproduct of K(Π) is given by

∆(gn) =
∑
i+j=n

gi ⊗ gj .

It follows that the map gn 7→ en preserves the product and coproduct. Since the antipode of a
graded Hopf algebra is unique, this map also also preserves the antipode. This gives the desired
isomorphism K(Π) ∼= Λ. �

It is instructive to compare the antipodes of K(Π) and Λ. In Π the antipode of n!gn is given
by the face structure of the permutahedron πn, as described in Section 1.3.4. This gives:

s(gn) =
∑

λ1+···+λk=n

(−1)kgλ1 · · · gλk ,

while the antipode of Λ is given by s(en) = (−1)nhn. Comparing these expressions, we obtain
a polyhedral algebraic proof of the expression of the homogeneous symmetric function hn in the
elementary basis:

hn =
∑

λ1+···+λk=n

(−1)n−keλ1 · · · eλk .

5.7. F: Paths and associahedra, revisited

Recall that a partition into paths on I is a graph whose connected components are paths, and
F[I] denotes the collection of partitions into paths on I. Recall the Hopf monoid F defined in
Section 1.2.5. The product of two partitions into paths is their disjoint union. If s is a path and
I = S t T is a decomposition, then s|S is the path on S with the order inherited from s, whereas
s/S is the induced subgraph on T .

Proposition 5.7.1. The Hopf monoid F of paths is a submonoid of the co-opposite Wcop of
the ripping and sewing Hopf monoid W.

Proof. This follows readily from the observation that the product operations on F and W
coincide, while the coproducts are co-opposite to each other. �

In light of this statement and the fact that W and Wcop share the same antipode by Proposition
1.1.17, Theorem 5.5.6 immediately gives us a combinatorial formula for the antipode of the Hopf
monoid of paths F. This formula has several interesting combinatorial variants, which we explore
in the remaining sections.

5.7.1. The antipode of paths. If l is a linear graph and t is a tubing of l, define the linear
graph of t, denoted l(t), as follows. Each tube τ of t gives a path l(τ) consisting of the vertices
which are in τ and in no smaller tube of t, in the order they appear in τ . The union of these paths
is l(t). This procedure is illustrated in Figure 8.

Figure 8. A tubing t of the path 123456789; its linear graph is l(t) = 12|3|49|58|6|7.
The labels and edges of the path have been omitted for clarity.
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Proposition 5.7.2. The antipode of the Hopf monoid of paths F is given by the following
cancellation-free expression. If l is a linear graph on I then

sI(l) =
∑

t tubing

(−1)|t| l(t)

summing over all tubings t of l, where l(t) is the linear graph of t.

Proof. This is a direct consequence of Theorem 5.5.6 because for a linear graph w = l, the
graph w(t) given by (59) is the linear graph l(t). �

There are natural bijections between tubings on a path pn of length n, valid parenthesizations
of the expression x0x1 · · ·xn, and plane rooted trees with n+ 1 unlabeled leaves [26] [91, Chapter
6]. This bijection allows us to state Proposition 5.7.2 in terms of parenthesizations or plane rooted
trees as well. We leave the details to the interested reader.

We can obtain a more useful formula by grouping equal terms in Proposition 5.7.2 as follows.
As we range over the tubes τ of a tubing t, the components of the linear graph l(t) form a set
partition of I, which we call π = π(t). We also write l(π) = l(t).

Notice that π = π(t) is a noncrossing partition of l; that is, if we let < denote (either of)
the (two) linear order(s) on I imposed by l, then π does not contain blocks pi 6= pj and elements
a < b < c < d such that a, c ∈ pi and b, d ∈ pj . It remains to describe the coefficient of l(π) for
each noncrossing partition π in the expression of Proposition 5.7.2.

Let NC(l) be the set of noncrossing partitions of l. If |l| = n, then

|NC(l)| = Cn =
1

n+ 1

(
2n

n

)
is the n-th Catalan number [62]. We define the linear graph of a noncrossing partition π ∈ NC(l)
to be the graph on I containing one path for each part of π with the order induced by l.

To simplify the discussion we let I = [n] and l be the path 12 · · ·n. For a noncrossing partition
π of I, let the adjacent closure π be the partition obtained from π by successively merging any two
adjacent blocks S1 and S2 such that maxS1 = b and minS2 = b+ 1 for some b.

Example 5.7.3. The adjacent closure of the noncrossing partition π = 1|26|3|45|78 in NC(8)
is π = 12678|345.

Theorem 5.7.4. The antipode of the Hopf monoid of paths F is given by the following cancellation-
free and combination-free expression. If l is a path on I,

sI(l) =
∑

π∈NC(l)

(−1)|π|C(π:π) l(π)

summing over all the noncrossing partitions π of l. Here l(π) denotes the linear graph of π,
π = {p1, . . . , pk} is the adjacent closure of π, and C(π:π) =

∏
pi∈π Cni where ni is the number

of blocks of π refining block pi of π.

Proof. For a noncrossing partition π, the coefficient of l(π) in the expression of Proposition
5.7.2 is equal to the number of tubings u of l with π(u) = π. We claim that this number equals
C(π:π).

Let π be a noncrossing partition of [n], and consider the set t of tubes τi = [min pi,max pi]
for all blocks pi of π. Notice that τi ⊂ τj , τi ⊃ τj , or τi ∩ τj = ∅ for i 6= j; if that were not the
case, without loss of generality we would have min pi < min pj < max pi < max pj , which would
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contradict the assumption that π is noncrossing. However, t is not necessarily a tubing because it
may contain adjacent tubes.

Let t be the tubing obtained from t by successively merging any two adjacent tubes of the form
[a, b] and [b+ 1, c]. It follows from the definitions that the noncrossing partition associated to t is
π.

For each tube of t, let us remember the tubes in t that constituted it by drawing vertical dotted
lines separating them. This process is shown in Figure 9. Notice that if part pi of π contains ni
parts of π, then the corresponding tube ti of t contains ni tubes of t.

12|3|49|58|6|7

t t

u

_

π

Figure 9. The process to go from a noncrossing partition π = 12|3|49|58|6|7 to a
tubing u such that π(u) = π. The step π 7→ t is bijective and the map t 7→ t′ is
defined uniquely; we draw the vertical lines in t′ are a visual aid, but they are not
part of t. The partial tubing t has

∏
pi∈π Cni = C3C2 = 10 possible preimages u,

corresponding to resolving the two tubes having 3 and 2 vertical compartments,
respectively.

Any tubing u such that π(u) = π is obtained from the set t of tubes – which is usually not a
tubing – by “resolving” any maximal sequence of adjacent tubes, making them nested. To do this,
we consider each tube τi of t, treat the ni tubes of t that it contains as singletons, and replace them
with a maximal tubing of size ni; there are Cni such tubings for each i. This explains why there
are C(π:π) tubings u of l with π(u) = π, completing the proof. �

Since F is commutative, its antipode is multiplicative. This gives a similar cancellation-free
and combination-free formula for sI(α) for any partition into paths α on I.

Example 5.7.5. For the path abcd, Theorem 5.7.4 gives the formula from the introduction:

(( + 2  +  +  +  2  s
a b c d

= _

_

a b c d
a b c

d

a b d

c

a c d

b

b c d

a
+ 2  a b

c d
   +   

   5  a b

c d

_   5  b c

a d

_   5  c d

a b

_   2  a c

b d

_   2  b d

a c

_   2  a d

b c
 +14  a b

c d

a d

b c

Theorem 5.7.4 explains the double appearance of Catalan numbers in the formula for the
antipode of a linear graph: each coefficient is a products of Catalan numbers, and the number of
terms (14 in this case) is the number of noncrossing partitions, which is also a Catalan number.
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5.7.2. Associahedra and paths. As we have already anticipated, our formulas for the an-
tipode of the Hopf monoid of paths F are controlled by Loday’s associahedra. We now make this
connection precise.

We begin with a technical lemma. Recall that the Loday associahedron a` of a linear order ` of
I is the Minkowski sum a` =

∑
J ∆J , where we sum over all the intervals J of the linear order `.

Lemma 5.7.6. If `1 6= `2 are linear orders on I, then a`1 and a`2 are normally equivalent if and
only if `2 is the reversal of `1.

Proof. If `2 is the reversal of `1 then `1 and `2 have the same intervals, so a`1 = a`2 .
Conversely, suppose we know the normal fan N := N (a`) of the associahedron of a linear order

`. Then we know which hyperplanes of the form y(i) = y(j) for i, j ∈ I are contained in (the
codimension 1 subcomplex of) N . The hyperplane y(i) = y(j) can only arise if a` has ∆ij as a
Minkowski summand. In turn, that summand appears if and only if i and j are adjacent in the
linear order `. It follows that N determines the set of adjacent pairs of `, and these completely
determine the linear order ` up to reversal. The desired result follows. �

Proposition 5.7.7. The Hopf monoid of paths F is isomorphic to the Hopf monoid of associ-
ahedra A.

Proof. The injective maps F ↪→ Wcop ∼= WBScop ↪→ BScop ↪→ SHGcop of Propositions 5.7.1,
5.5.3, and 5.4.3 allow us to identify a path l ∈ F[I] with the set tubes(l) ∈ SHG[I]. Together with
the surjection SHGcop � HGP of Proposition 5.2.8, this gives a map a : F → HGP which sends a
path l to the associahedron al. The image of this map is A ⊆ HGP. Furthermore, a is injective
thanks to Lemma 5.7.6, keeping in mind that a path and its reverse are identified in F. The desired
result follows. �

5.7.3. Associahedra and Faà di Bruno. The Faà di Bruno Hopf algebra F , introduced
by Joni and Rota [60] and anticipated by many others, appears naturally in several areas of
mathematics and physics [35, 39]. In this section we show that the Fock functor relates the Hopf
monoid of associahedra A (or equivalently the Hopf monoid of paths F) to the Faà Bruno Hopf
algebra F .

As an algebra, the Faà di Bruno Hopf algebra F is freely generated as a graded commutative
algebra by {x2, x3, . . .} with deg xn = n − 1. It is convenient to write x1 = 1. The coproduct is
given by

∆(xn) =

n∑
k=1

∑
λ

n!

λ1!λ2! · · · 1!λ12!λ2 · · ·
xλ11 xλ22 · · · ⊗ xk

summing over all sequences λ = (1, 1, . . . ; 2, 2, . . . ; . . .) = (1λ1 , 2λ2 , . . .) of length k and total sum n,
so λ1 + λ2 + λ3 + · · · = k and λ1 + 2λ2 + 3λ3 + · · · = n.

The grading and the formulas are cleaner when we present F in terms of the generators an−1 =
xn/n!; it is useful to write a0 = 1. Then we have

∆(an−1) =

n∑
k=1

∑
µ

(
k

µ0, µ1, µ2, . . .

)
aµ11 aµ22 · · · ⊗ ak−1

summing over all sequences µ = (0, 0, . . . ; 1, 1, . . . ; 2, 2, . . . ; . . .) = (0µ0 , 1µ1 , 2µ2 , . . .) of length k and
total sum n− k, so µ0 + µ1 + µ2 + µ3 + · · · = k and µ1 + 2µ2 + 3µ3 + · · · = n− k.

Proposition 5.7.8. The Fock functor K maps the co-opposite A
cop

of the Hopf monoid of
associahedra A to the Faà di Bruno Hopf algebra F .
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Proof. Let the Fock functor K take the associahedron a` to the element an where n = |`|.
Then (32) tells us that as an algebra K(A

cop
) = k[a0, a1, . . .] while Lemma 2.3.4 tells us that the

coproduct of K(A
cop

) is given by

∆(an−1) =
∑

[n−1]=StT

a|T1| · · · a|Tk| ⊗ a|S|

where if S = {s1, . . . , sk−1} then Ti is the interval of integers strictly between si and si+1, with the
convention that s0 = 0 and sk = n.

A decomposition [n − 1] = S t T contributes to the term aµ11 aµ22 · · · ⊗ ak−1 in ∆(an−1) when
|S| = k−1 and the k gaps |T1|, . . . , |Tk| between consecutive elements of S, including the initial and
final gap, have sizes 0, 0, . . . (µ0 times), 1, 1, . . . (µ1 times), 2, 2, . . . (µ2 times), etcetera. For example,
for the decomposition [12] = {1, 2, 4, 7, 8, 12} t {3, 4, 5, 9, 10, 11}, the gaps between consecutive
elements of S = {1, 2, 4, 7, 8, 12} have sizes 0, 0, 1, 2, 0, 3, 0 in that order.

Now it remains to observe that there are
(

k
µ0,µ1,µ2,...

)
different ways of assigning the gap

sizes 0, 0, . . . (µ0 times), 1, 1, . . . (µ1 times), 2, 2, . . . (µ2 times), etcetera to their k slots accord-
ingly. Furthermore, these determine the possible choices for S and T that contribute to the term
aµ11 aµ22 · · · ⊗ ak−1 in ∆(an−1), as desired. �

5.7.4. Three antipode formulas for the associahedron. At this point we have given
formulas for the antipode of Loday’s associahedron an in three different Hopf algebraic structures:
the Hopf monoids GP and GP and the Hopf algebra K(GP).

In GP, Theorem 1.6.1 gives

(60) s(an) =
∑

F face of an

(−1)n−dimFF

where every face F of an is normally equivalent to a product of Loday associahedra.
In A ⊆ GP, thanks to the isomorphism F ∼= A, Theorem 5.7.4 gives

(61) s(an) =
∑

π∈NC(n)

(−1)|π|C(π:π) ap1 · · · apk

summing over the noncrossing partitions π of [n]; here π = {p1, . . . , pl} is the adjacent closure of
π, and C(π:π) = Cn1 · · ·Cnl where ni is the number of blocks of π refining block pi of π.

In K(A) ⊆ K(GP) the proofs of Theorems 2.4.3 and 2.4.4 give

(62) s(an) =
∑

〈1m12m2 ··· 〉`n

(−1)|m|
(n+ |m|)!

(n+ 1)!m1!m2! · · ·
am1

1 am2
2 · · ·

summing over all partitions 〈1m12m2 · · · 〉 of n, where |m| = m1 +m2 + · · · .
Each formula coarsens the previous one under the projection maps GP � GP � K(GP). In

the first formula all faces of the associahedron are distinct. In the second formula, faces of the
associahedron are grouped together according to their normal equivalence classes, which in turn
correspond to their combinatorial type and position with respect to the axes. In the third formula,
normal equivalence classes of faces of the associahedron are grouped according to their orbits under
the symmetric group, which correspond to their combinatorial type.

Example 5.7.9. Let us consider the contribution of the 6 pentagonal faces of the associahedron
a4 to the three versions of the antipode s(a4):
• In GP, each one of these six pentagonal faces is a separate term of s(a4).
• In GP, these six faces group into four normal equivalence classes: the noncrossing partitions
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1

2

4

3

Figure 10. The three-dimensional associahedron a4.

{123, 4} and {1, 234} contribute two pentagons each, while the noncrossing partitions {134, 2} and
{124, 3} contribute one pentagon each.
• In K(GP), these six faces are all grouped together into the coefficient of a3a1, which is equal to
(−1)2(4 + 2)!/(4 + 1)!1!1! = 6.

These observations have two interesting enumerative corollaries.

Corollary 5.7.10. The number of normal equivalence classes of faces of Loday’s associahedron
an is the Catalan number Cn.

Proof. The projection GP � GP takes (60) to (61), mapping the faces of an onto their
normal equivalence classes. The result follows from the fact that the terms of (61) are in bijection
with the noncrossing partitions of [n] which are counted by the Catalan number Cn. �

Corollary 5.7.11. Let µ = 〈1m12m2 · · · 〉 be a partition of n and write |m| = m1 +m2 + · · · .
Let NC(µ) be the set of noncrossing partitions of n having type µ; that is, having mi blocks of size
i for i = 1, 2, . . .. Then, in the notation of Theorem 5.7.4,∑

π∈NC(µ)

C(π:π) =
(n+ |m|)!

(n+ 1)!m1!m2! · · ·
.

Proof. The map GP � K(GP) takes (61) to (62). It maps each normal equivalence class
of faces, which is labeled by a noncrossing partition of [n], to its combinatorial type, which is the
corresponding partition of n. It then remains to observe that the noncrossing partitions of type
µ are the ones that map to the partition µ, so their contributions to (61) must add up to the
contribution of µ to (62). �
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